
Hierarchical Scheduling of Cooperative TSN
for Mixed Critical Wireless Systems

Jannusch Bigge∗ and Christoph Sommer∗
∗TU Dresden, Faculty of Computer Science, Germany

https://www.cms-labs.org/people/ { https://www.cms-labs.org/people/bigge , https://www.cms-labs.org/people/sommer }

Abstract—Inside highly mobile vehicles, In-Vehicle Networks
(IVNs) are designed to meet the requirements of reliable and
deterministic communication. When two vehicles communicate,
however, decentralized best-effort wireless connections threaten
to re-introduce the problems that IVNs were designed to solve.
Moving to centralized coordination cannot meet the requirements
of Vehicle to Everything (V2X) systems for a wealth of reasons
from capacity bounds to privacy and safety. In this paper, we thus
propose hierarchical cooperative Time Sensitive Networking (TSN)
as an approach for cooperating (rather than centrally managed)
TSN networks via best-effort wireless links. Our approach is both
suited to mixed IVN and V2X systems of highly mobile nodes like
platooning and generalizable to similar systems requiring streams
across cooperating TSN networks. We also present an approach
for the simulative performance evaluation of such systems and
describe an Open Source reference implementation using well-
established simulation tools. We conclude with the results of a
proof of concept evaluation to demonstrate the feasibility and
dynamic adaptivity of our approach.

I. INTRODUCTION

Inside road vehicles, In-Vehicle Networks (IVNs) have al-
ways had to meet the requirements of reliable and deterministic
communication. More recently, though, the gradual introduction
of modern Advanced Driver-Assistance Systems (ADAS) has
led to ever higher general loads in the network and ever stricter
requirements on the bus systems. To meet these requirements,
Time Sensitive Networking (TSN) over Ethernet (already a well
established technique in the industry for factory automation) is
being adapted for IVNs in the context of IEEE 802.1DG [1].
Even though there are still many open questions, such as those
surrounding dynamic scheduling, such solutions hold great
promise for the future of IVN.

Between two vehicles, at the same time, wireless connections
that forgo infrastructure rely on best-effort wireless connections,
which threatens to re-introduce the problems surrounding
reliability and determinism that TSN just tried to solve inside
the vehicle. To meet reliability challenges in wireless networks,
5G-TSN [2] recently started to work towards real-time wireless
communication channels based on TSN. One key aspect of
such 5G systems, however, is the requirement of a centralized
base station which manages the connections. In the context
of highly mobile ad hoc systems like Vehicle to Everything
(V2X), such centralized coordination introduces problems like
capacity bounds, overhead, and a dependency on infrastructure.

Even assuming that these are solved problems, centralized
coordination would also, by definition, need to govern the
whole network. This would require universal cooperation

car 1

ECU

switch

OBUstream11

best effort

car 0

ECU

switch

OBU stream01

Figure 1. Logical stream across two cars connecting corresponding Electronic
Control Units (ECUs), which is divided into two separate streams bounded
by the limits of each individual In-Vehicle Network (IVN) and crossing a
best-effort wireless channel in between the cars.

between all manufacturers and the acceptance of an external
application for scheduling the internal IVN. Moreover, aside
from such technical challenges, a centralized approach would
also raise concerns regarding security, privacy, and safety. First
promising approaches to circumvent these limitations were
already presented in the context of decentralized management
of networks, but are mainly specific to single (mainly industrial)
use cases and cannot be easily transferred to the context of
highly mobile V2X systems.

To fill this gap, we propose hierarchical cooperative TSN
as an approach for cooperating (rather than centrally managed)
TSN networks via best-effort wireless links, creating the system
architecture illustrated in Figure 1. Our approach is both suited
to mixed IVN and V2X systems of highly mobile nodes like
platooning [3] and generalizable to similar systems requiring
streams1 across cooperating TSN networks. We also present
an approach for the simulative performance evaluation of such
systems, describe an Open Source reference implementation
using well-established simulation tools, and present the results
of a proof of concept evaluation to demonstrate the feasibility
and dynamic adaptivity of our approach.

II. RELATED WORK

To enable deterministic real-time communication over
Ethernet, the TSN set of standards was developed by the
IEEE 802.1 TSN Task Group [4]. Different standards from
this set can be used and combined to realize different use
cases. The standards are grouped into four categories: time

1As the approach we describe spans the full protocol stack, for clarity, we
forgo using different terminology for each protocol/service data unit of each
protocol layer; instead, we consistently use the term stream for TSN-governed
data in transit, packet for a unit of data, and the terms talker and listener for
the sender and receiver of such data, respectively.

© IFIP, (2024). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in PUBLICATION, VOL#, ISS#, (DATE), http://IFIP DL URL.

20th Wireless On-demand Network systems and Services Conference (WONS 2025)



synchronization, high availability / ultra reliability, bounded
low latency, and dedicated resources plus API. By enabling
time synchronization, one can combine features from bounded
low latency for the scheduling together with dedicated resource
allocation for these streams to achieve zero congestion loss.

A rich set of related work exists for TSN in the context of
industrial applications like factory automation, its original focus.
Here, network configuration and management is usually done
by a Central Network Configuration (CNC) in combination
with a Centralized User Configuration (CUC) [5]. Luo et al. [6]
define three different levels of management: fully centralized,
fully decentralized, and a centralized network with distributed
user configuration. With the rise of Industrial Internet of
Things (IIOT) and smart factories, the requirements for the
network started to change. To address these new problems
of complex, highly dynamic typologies in combination with
spatio-temporal burst traffic they propose a hierarchical network
topology in which multiple Computing Network Collaboration
Domains (CNCDs) collaborate. We build on this approach and
expand the idea of multiple TSN domains to the context of
vehicular networking, but now with completely independent
TSN networks. The approach of Luo et al. [6], in turn, is based
on offloading the computational load with fog/edge computing
nodes, originally designed for smart villages [7].

In vehicular networking, similar problems exist. Karle
et al. [8] developed a complex simulation of IVNs to investigate
networking in the context of autonomous driving. Andronovici
et al. [9] developed a TSN testbed and compared the mea-
surements with an OMNeT++ and INET based simulation for
typical streams and configurations of an IVN. As the load
by Electronic Control Units (ECUs) is constantly increasing
and modern ADAS are introducing new requirements for the
network, as Zou et al. [10] point out, the authors particularly
stress the high amount of spatio-temporal data and the loss in
usefulness if delivered incompletely, which is often a problem
with time triggered streams. To solve this, they proposed a new
scheduling approach with a focus on in-car networking. New
standards like IEEE 802.1DG [1] (currently at draft version 4)
focus directly on TSN for vehicular communication to address
some of these issues. Different approaches are pursued in
parallel, such as one based on the Time Aware Shaper (TAS)
and Asynchronous Traffic Shaping (ATS), proposed by Zhou
et al. [11]. For their investigations they simulated the IVN with
OMNeT++ and CORE4INET.

The necessity of combining the IVN with V2X was shown
by Buse et al. [12], who described a way to couple hardware-in-
the-loop simulation with Vehicular Ad-Hoc Network (VANET)
simulation. With the increasing requirements brought about by
advanced sensors and actuators and the connections between
them, the demand for deterministic connections is not only
increasing for wired connections but for wireless connections
as well, which is also addressed by the IEEE and the 3GPP [13].
These hybrid TSN networks try to include the wireless
connection and manage it with different approaches depending
on the technology stack. One fundamental problem common
to all hybrid approaches according to Seijo et al. [14] is time

synchronization and resource allocation. Atiq et al. [13] com-
pared multiple integration approaches and especially compared
the differences between WLAN and 5G regarding wireless
TSN capabilities. Different approaches to how TSN could be
integrated in WLAN were investigated by Seijo et al. [14],
both in theory and in a testbed. In contrast, Durisi et al. [15]
investigated the performance of TSN capable 5G systems.
These approaches have in common that they focus on the
design of existing TSN network architectures [5], which treat
the whole network as one big network, managed and configured
in a centralized approach with one CUC and CNC, which incurs
all the drawbacks mentioned above.

The simulation of wireless TSN was shown by Kinabo
et al. [16]. A simulation for TSN capable 5G systems was
proposed by Debnath et al. [2]. Common to all simulation
approaches is that they are very specific to a particular use
case. A first simulation approach in which the simulation of
the TSN based IVN was combined with the simulation of the
wireless connection was shown by Turcanu and Sommer [17],
a simulation approach on which we build in this paper.

III. COOPERATIVE TIME SENSITIVE NETWORKING (TSN)

In an automotive context, we face similar problems as in
smart factories with IIOT: With features like modern ADAS,
not only the network load in general increases but also the
requirements for this kind of traffic are increasing. A new
dimension to the problem is that of constant changes in the
network topology as vehicles not just join or leave the network
but permanently change distances to each other. Another critical
problem is the discoverability and the management of the
network. Managing a whole network as well as dividing it
into multiple CNCDs requires knowledge about the network in
general and all its devices. Moreover, it is highly unlikely
that two vehicles from different vendors would allow the
adaption of the IVN schedule by the other one if the internal
network structure would be propagated to other vehicles or
infrastructure.

In this paper, we address these problems by proposing a
hierarchical cooperative TSN approach. Instead of looking
at the entire network, which is very difficult given the high
dynamics, we treat the individual subnetworks as independent
networks. This is in stark contrast to existing approaches, in
which the network is managed as a whole, similar to the
approach of CNCDs. Still, despite our goal of keeping the
networks independent, we want to achieve better performance
than simple best-effort connections in-between the independent
TSN networks. To achieve this, we want each subnetwork to
be aware of wireless connections from others and to react to
incoming messages.

Figure 2 illustrates this approach for two separate TSN
networks (TSN D1 and TSN D2) connected with a best-effort
wireless connection which is not included in any of the TSN
networks. Every subnetwork should be as big as possible to
increase the amount of deterministic connections in the whole
network. At the same time, it should be only so big that it is
manageable by a single configurator. This is in contrast to the



car 1

ECU

switch

OBU

ECU ECU

CUC TSN D1 TSN D2

car 2

ECU

switch

OBU

ECUECU

CUC

wireless

Figure 2. Logical representation of hierarchical cooperative TSN domains
which are connected via an unmanaged wireless channel. Two completely
independent TSN domains are created, each with its own CNC and CUC.

device

device

device

device device

CNCD 1

device

device

device

device device

CUC

CNCD 2

CUC

TSN D1

Figure 3. Traditional approach to decentralized TSN configuration: unified
configuration across two collaborating domains, which requires a global CNC
and CUC as proposed by, e.g., Luo et al. [6].

traditional approach illustrated in Figure 3, where the whole
network is managed as a single domain.

Our concept realizes the following goals:
a) Each car is only responsible for its own IVN schedule. No

other car can dictate its schedule, neither can it dictate that
of other networks.

b) Well-scheduled streams across multiple IVNs (connected
via V2X communication) are the result of cooperation
between all participants of the stream.

c) Whenever a new packet arrives, the receiver should remem-
ber this packet for a certain time tremember. If a second
packet arrives that can be sorted into the same stream, the
IVN schedule should be adapted to fit the new stream as
well as possible without breaking any constrains of the
IVN.

d) At the same time, every participant of the V2X network
should, whenever it notices a new periodic message, attempt
to soft reserve a corresponding slot in its own schedule.
This means that, in the IVN schedule, this time slot should
not be used to send data.

Together, this approach leads to a network where, after an
initial transient period, every participant is aware of other
senders and can reduce the latency for their streams.

To improve the placement of the streams in the schedule
even further, each stream should be adapted during its existence.
This is because of inherent variations in the arrival time of
incoming messages even if they belong to the same stream.
This can have multiple reasons like a non-deterministic sender-
IVN, a high utilization of the V2X link which delays channel
access (like CSMA/CA channel access) or requires retries, or
simply variations of the distance between sender and receiver.

We address this by ensuring that each slot of a stream is
big enough to fit any one of a number of past messages,
plus a safety buffer commensurate with the expected jitter.
Equation (3) gives the concrete implementation chosen for the
proof of concept evaluation in this paper.

Respecting these rules, a communication path from one
ECU in a car c1 to another ECU in a different car, c0, could
look as shown in Figure 1. In a traditional TSN approach,
one stream would be established from the talker (ECU in
c1) to the listener (ECU in c0) including the wireless path.
With hierarchical cooperative TSN, this stream is divided into
two streams. The first stream stream11 only includes the part
from the ECU in c1 up to the On Board Unit (OBU) in c1. A
second stream stream01 is configured only in c0 and goes in
the opposite direction, starting from its OBU and sending in
its ECU. Note that, following our approach, stream01 will be
created with the second message that arrives in the specified
time interval tremember, at the OBU of c0. The initial cycle
time tcycle can be calculated based on the arrival time of the
first message ta1 and the arrival time of the second message
ta2.

As there is a high probability that tcycle is not perfect
due to the discussed sources of jitter, one should adapt the
parameters when more messages arrived. One way would be
the recalculation of tcycle which, depending on the algorithm,
can lead to a very precise value – though only in the complete
absence of any noise. To avoid this problem and at the same
time increase the slot-hit-rate, we propose an approach in
which the slot length of the stream01 will be adapted instead.
Consistent with our goals, the wireless transmission between
c0 and c1 is not directly managed by any TSN network, but
only indirectly influenced by stream11.

IV. SIMULATING COOPERATIVE TIME SENSITIVE
NETWORKING (TSN)

At a high level, simulating cooperative TSNs encompasses
two main challenges, discussed in the following.

A. Internal and External Network

A crucial aspect is the network topology extraction. Tra-
ditional network configuration is performed on the complete
network, resulting in one big network graph including all
network nodes being extracted. For the approach of hierarchical
cooperative TSN this could be a problem as we want to separate
every IVN into its subnetwork. Having every IVN represented
as its individual network topology assures that no vehicle is
ever attempting to configure the network of another vehicle.
Furthermore, we need a representation of the connections
between the individual vehicles without the IVN, as we do
not want to configure the subnetworks. Depending on the
configuration and the module which tries to calculate and
apply a configuration, the correct network topology needs to
be provided.

In more detail, simulating multiple IVNs and the connection
between the vehicles requires special care regarding the
visibility of the individual network devices. By making sure



that the visibility is limited to the network the device belongs
to, we assure, at the same time, that we cannot configure other
networks. This is especially important for the scheduler, which
should not be able to access an IVN which is not managed by it.
Still, it is important that the OBUs and the actual sender in the
IVN can address the receiver OBU directly instead of simply
broadcasting everything. To make this possible, the forwarding
tables in the IVNs need to be updated if a new vehicle is
created or deleted. The address of the external interface of
every OBU is added to the forwarding table, which allows
every network device to address the destination vehicle directly
without creating unnecessary multicast or broadcast traffic in
the IVN. Moreover, the receiving OBU needs a mapping for
every incoming traffic to the corresponding internal network
device, as well as the priority this traffic should have. This
allows every subnetwork to independently choose the priority
this traffic should have in the IVN and also eliminates the need
to publish the internal endpoint to other senders.

B. Dynamic Time Sensitive Networking (TSN) scheduling

A key design choice for scheduling was to adapt an existing,
well-established TSN scheduler to our needs to build on
validated code. As we want to leave the responsibility for
each IVN schedule within in the vehicle, every vehicle has
its own scheduler. This approach was chosen to make sure
that the scheduler never includes connections (like the wireless
ones or from other cars) it is not allowed to have. Still, the
scheduler needs to distinguish between all different senders.
Every external sender that should be included in the IVN
is represented as an application running on the Network
Interface Card (NIC) which received the message first. This
application contains all information necessary for the scheduler
to include the external partner into the schedule of the IVN.
As a consequence, the scheduler does not know that this
virtual application is only a representation of a real external
communication partner and treats it as every other application
in the IVN. This also allows us to modify the parameters in a
way that we can easily adapt to changes from outside. Typically,
a wireless transmission in the context of vehicles is influenced
by the distance of the sender and receiver. If this distance
varies in a given range, and respectively also the transmission
time, we can adapt our slot length parameters for the scheduler
to increase the slot hit rate for this application.

V. SIMULATION STUDY

To show the effects of hierarchical scheduling of cooperative
TSN, we simulate a platoon of five vehicles.

For this, we use OMNeT++ as a discrete event simulator
in combination with the model libraries and tools listed in
Table I: SUMO [18] runs microscopic simulation models of
road traffic. Veins serves to mirror its simulated vehicles
as agents of an OMNeT++ based network simulation and
integrates wireless communication models suitable for vehicular
networks. Plexe [3] extends Veins and SUMO with models
of common Cooperative Adaptive Cruise Control (CACC)
approaches, which enables simulations of vehicle platooning.

Table I
USED SOFTWARE VERSIONS.

software version modified

OMNeT++ 6.0.3 no
INET 4.5.2 yes2

Veins 5.3 no
Plexe 3.1 no
SUMO 1.20 no
TSNSCHED 1.1 yes2

INET simulates both the Ethernet based IVN and the V2X
communication. Some additional modules were created by us
for the connection of the libraries and additional functionality,
which was necessary as a result of the simultaneous simulation
of IVN and V2X. The full source code is available online.2

Connecting multiple simulation libraries brings unique chal-
lenges. Taking the position of a module into account for model
calculations such as path loss or propagation time is a common
problem and has been solved already in multiple frameworks.
Instead of having multiple independent mobility modules (i.e.,
those tracking module position), they were replaced by attached
mobility modules, each from its original framework but listening
to mobility changes from another. Similar to the representation
of the mobility also the representation of a packet is solved by
multiple frameworks. With the introduction of driver modules,
this can be solved. They extract key information, create a new
packet for the new framework, and finally encapsulate the
original packet in the newly created. Incorrect packet lengths
would be caused by treating the old packet as payload or data,
and so it needs to be avoided. In the connection layer at the
receiving module, the driver performs the same operation in
the other direction.

Figures 4a and 4b illustrate the resulting topology of agents
in the combined simulation: Figure 4a shows a single protocol
stack of a host in INET with submodules closely mirroring OSI
layers one through seven. Figure 4b demonstrates how multiple
networked devices, each containing such submodules, form the
network topology of a single vehicle module in our combined
simulation. Of note is that the internal components of the Plexe
stack are not encapsulated in a network module and instead
placed at the root level of the vehicle module (red dashed line).
This is for compatibility reasons, as some modules reference
other modules by relative paths and otherwise Plexe would
need to be modified. More generally, extensions to existing
module libraries are restricted to shims that are designed to
not impact model validity. The only modifications of existing
model code were necessary to allow INET to nest network
devices and to visualize the state of internal components.

Thus assembled, each vehicle in the combined simulation
contains four networking devices (connected by 1 m long full-
duplex Ethernet cables operating at 100 Mbit/s):

• an ECU which consumes and produces the data,
• a TSN clock,

2https://www.cms-labs.org/research/software/cooperativetsn/



Platooning.node[0].tsnNic

link layer

interface layer

network layer

transport layer

application layer

mobility

interfaceTable

cb

bl

ethernet

li

lo[0]wlan[0] eth[0]

ipv4

nl

udp tcp

tn

app[0]

at

(a) mobile agent in plain INET

Platooning.node[0]

helper

scenario

applprot

mobility

inetDriver

gateScheduleConfigurator

tsnClock

tsnSwitch[0]

tsnObu

tsnEcu

macForwardingTableConfigurator
inet_mobility

(b) mobile agent in our combined simulation

Figure 4. Representations of mobile agents in plain INET (one agent is one
host with one protocol stack) and in our combined simulation (one agent
is one vehicle, which contains multiple networked devices, each of which
then contains one protocol stack). Red cloud: subcomponents making up one
logical device of the Plexe stack.

• an OBU as a gateway between the internal Ethernet-based
TSN network and the external network which connects
the individual cars via V2X communication technologies,
and

• a TSN switch which connects the other three.
Messages are generated by an unmodified Plexe platooning

application to realize a standard platooning use case. This
also serves to highlight the fact that the proposed approach
is not limited to a specific application or simulation module
library. The only difference to a standard Plexe simulation is
that the messages are not sent out via a wireless interface of
the platooning ECU but instead via one of its wired interfaces,
to be sent via the IVN to the OBU of the car.

Platooning messages are thus 246 Byte long and generated
at each car at fixed intervals of 100 ms, starting with a random
offset (uniformly distributed between 0.01 ms and 100 ms) after
the initialization of the vehicle. Note that the fixed message
generation interval of 100 ms is merely chosen for ease of
simplicity; the employed scheduler TSNSCHED can just as
well calculate and create a hypercycle.

As we do not create any other noise traffic, the path from
the ECU to the OBU is completely free and the message
can pass through without any additional queue time added by
TSN. As we use store-and-forward switches, though, we do
add some delay to the transmission, namely the time that is
necessary for the packet to reach the switch completely. Taking
this additional delay into account is important because the
scheduler needs to know this delay for the placement of the
slots. If we would only consider the arrival time of the octets
needed to evaluate the switching, like it is done in cut-through
switching, the slot would be already open even though the
switch is not yet in a state where it can start the transmission;
thus, the slot would end too early. The end-to-end delay in
the sender ∆stream0 is always the sum of the propagation time
tprop and the transmission time ttrans of the packet.

∆stream0 = tprop + ttrans = 2× (5 ns + 19.68 µs) = 39.37 µs
(1)

At the receiver, if we assume that this message arrives at time
ta at the car and (depending on the start time of the slot tslot
and the arrival time at the switch tarr of the whole packet)
has to wait for a time ∆slot = tslot − ta until the first slot in
the schedule is free, and if we assume that it uses the same
IVN topology as the sender, ∆stream1 should be the same as
∆stream0+∆slot. The only delay not accounted for, then, is the
delay added by the wireless connection ∆w (to be discussed
later in this section). Taking all delays into account, the total
end-to-end delay is then:

∆total = 2∆stream+∆w+∆slot = 78.74 µs+∆w+∆slot (2)

Naturally, because this is a best-effort network, ∆w cannot
be computed. However, we can influence ∆w indirectly by
respecting the sending times of others as proposed in Section III
to not increase it unnecessarily. Even better would be a
prediction of ∆w such that the next packet hits the slot as well.
The used prediction is described later in this chapter. Easier to



t0 t0 + tcycle

schedule 0

schedule 1

open closed guard

Figure 5. Schedule for incoming traffic previous to the dynamic scheduling
(0) and after the scheduling (1).

optimize is tslot as we can directly move the placement of the
slot by adapting our schedule dynamically during the runtime.

Based on these values, the schedule is dynamically created
and adapted during the runtime of the simulation. To be able
to do this, we use the scheduler TSNSCHED [19], which
automatically calculates the network configuration based on
given constrains for individual TSN streams. The schedule is
not created immediately; instead every vehicle has to wait for
a given time until the external streams are taken into account
for the schedule creation. If a new message arrives for the first
time, there is no dedicated slot in the schedule for it. Indeed,
in the worst case, the scheduler cannot find a suitable schedule
for the new stream. In both cases, however, the data must not
get dropped; instead, it is important that we still have a slot in
which arbitrary traffic can travel through the IVN even though
we cannot guarantee any constraints anymore for this traffic.
Due to this reason, the initial TSN configuration contains a
slot which is big enough for all the packets arriving during
one cycle. Only this slot can be used for incoming traffic at
the start of the lifetime of every vehicle. Where this slot is
placed in the cycle is not important; in our case, TSNSCHED
places it at the beginning of each cycle. More precisely, the
initial slot (shown in Figure 5 for schedule 0) is placed at the
earliest possible position at which a packet could arrive at the
switch: tslot = t0 + tprop + ttrans.

For outgoing traffic, there are no constrains and the slot is
open for the whole cycle. This leads to zero queuing times
in the sender IVN. If we had used a simple schedule, e.g.,
the same schedule for every IVN for outgoing traffic as well,
all OBUs would try to send at the same time due to the
synchronized sending slots, which leads to collisions on the
wireless channel.

The newly created streams need to be placed at such positions
in the slot that ∆slot will be zero to minimize ∆total. To
achieve this, not only the start time of the stream needs to be
set correctly, but also the maximum allowed latency of the
stream must be configured accordingly. This is necessary as
TSNSCHED by default tries to optimize the schedule in a way
that all slots are placed as close together as possible. This
strategy increases the latency of streams as ∆slot increases.
The smallest possible allowed maximum latency is equal to
the delay ∆stream1 in the receiver.

To adapt to slight changes in the arrival time, we need to
update the schedule. For this, we consider the arrival times of
the ten last messages received for a given stream as set Ta.
The difference between the earliest and the latest arrival time
is taken and increased by 10 % to accommodate future semi-
systematic changes of arrival times. This relative approach
allows adapting to different scenarios. For example, in a
scenario with a rapidly changing ∆w due to a fast-changing
distance, the additional slot length will be larger, which will
increase the chances that the slot will fit the new message.
However, we will have to block more time, which will not be
used for other transmissions. In a scenario with low variation
in ∆w, the difference between the earliest and the latest arrival
time will be shorter, resulting in a smaller additional time.

Taken together, the new slot length lslot is calculated as:

lslot = 1.1× (max
ta∈Ta

ta − min
ta∈Ta

ta) + ttrans (3)

We decided to use nanoseconds as the resolution of the time
stamps. With this resolution, we can save the individual time
points with enough precision for a meaningful scheduling and
at the same time not create unnecessarily high computational
load. However, if we would not consider this loss in precision,
the individual slots in the schedule would not fit. To solve this,
we have to round down the arrival time stamps to make sure
that every arrival time is within the slot. At the same time, we
have to increase the total slot length by 1 ns because otherwise
the packet cannot be transmitted completely in the slot, as its
start time tslot was previously moved to a not matching time
point. In the worst case, this leads to a cycle up to 1 ns to big,
which is equivalent to approx. one fifth of a minimal-length
Ethernet frame for a bandwidth of 100 Mbit/s.

Using TSNSCHED for scheduling has some limitations. The
slot length can only be set indirectly via the packet size in
TSNSCHED. Increasing the packet size, however, does not
only increase the slot size but at the same time also increases
transmission time ttrans, which moves the schedule to a later
time point and increases the size of the guard bands. As we
still want to minimize the allowed latency to reduce ∆total as
much as possible, we have to recalculate the ∆stream1 as well.
Due to the previously explained rounding errors and the wrong
transmission time the scheduler assumes, the stream delay is
artificially lengthened to ensure that the slot is big enough.
This could lead to small queuing times, but as we will show in
Section VI this was not the case, as the correct tarr was late
enough behind tslot to completely avoid the potential offset.

We simulated two different scenarios to investigate the
improvements of our proposed hierarchical cooperative TSN
scheduling approach regarding the total end-to-end delay
∆total.

A. Static platoon scenario

The first scenario uses the static example included with Plexe,
which is not changing the distance between the vehicles during
the simulation and ensures that no two cars try to send at the
same time. As a result, ∆w is constant and in combination
with the deterministic behavior of the sender, we have a known



constant arrival time ta in the receiver (relative to the start of
a cycle) over the complete simulation time.

Due to these constant values, the scheduler does not need
to update the schedule. This, together with the fact that we
create no additional traffic – neither between nor within the
vehicle – every slot-start can be placed exactly aligned with
the stream-start and as a result ∆slot is zero. This means that,
after the first adaption of the schedule, the slot-hit-rate should
be 100 % leading to zero jitter in the receiver network as well.

This scenario works as a baseline to show the improvements
and at the same time how cooperative TSN behaves if all data
is received with a constant arrival time tarr relative to the
starting time of the cycle.

B. Sinusoidal platoon scenario

The second scenario is the sinusoidal scenario, again included
with Plexe. Here, the platoon leader speed is oscillating, leading
to changing distances between the cars. The distance change
results in different ∆w, which, in turn, influences the arrival
time at the receiver. Even though the distance change is only
approx. 2 m, and thus the delay varies between 33 ns and 40 ns,
this needs to be considered. If we ignored these changes, two
things could happen. If a new packet arrives earlier, the arrival
time ta would not match with the slot start time tslot, resulting
in additional queuing time. If a new packet arrives later, the
slot would not be big enough to transmit the packet. As we try
to fit our slots exactly, we would expect zero jitter again, but
the chances are given, that a packet have to wait for a whole
cycle.

VI. RESULTS

Our goal was to improve the end-to-end delay ∆total for
messages received from another vehicle without modifying
the sender or managing the connection between the vehicles
directly.

To achieve this, we dynamically reschedule the IVN of the
reception if we identify a new stream. To reduce the load on
the scheduler and sample more values to increase the chance of
setting the slot length better regarding the slot hit rate without
wasting too much time, we decided to update the schedule only
after we received ten new values, which should lead to a sample
time of approx. 1 s. Additionally, for ease of demonstration,
we artificially delay the rescheduling by the index of the car
plus five seconds.

Figure 6 shows the average end-to-end delay of all messages
arriving within a cycle, independent of the sender, split by
the receiver, for the static scenario. Each time point treconf
at which for the first time a new configuration was applied
(because we received enough messages from the same sender,
as defined by Ta) and thus for the first time the network was
rescheduled is marked with a dotted line. At the beginning
of the simulation, the resulting average end-to-end delay is
different for every car as every car sends at a different time.
Due to the different sending times, the arrival time ta in the
car differs, but the slot start time tslot is the same in every car.
Thus, ∆slot is varying, which influences ∆total directly.

6 8 10 12 14

0

20

40

60

80

100

simulation time in s

av
g

. 
en

d
t

o
e

n
d

 d
el

ay
 i

n
 m

s

Car0

Car1

Car2

Car3

Car4

Figure 6. Total end-to-end delay ∆total for all cars in the platoon, averaged
over all incoming connections from all other cars.

6.8 7.0 7.2 7.4

0

20

40

60

80

100

simulation time in s

en
d

t
o

e
n

d
 d

el
ay

 i
n

 m
s Car0

Car2

Car3

Car4

Figure 7. End-to-end delay ∆total in c1 with initial rescheduling at treconf
(dotted line).

6 8 10 12 14

simulation time in s

d
is

ta
n

ce
d

el
ay

sl
o

t 
le

n
.

in
 m

in
 m

s
in

 b
it

10

11.5

0

56

4236

4237

Figure 8. Comparison of the distance between c0 and c1 that influences ∆w

and thus increases the slot length lslot. The delay ∆total stays low after the
initial rescheduling at treconf due to the big enough slot.



Figure 7 shows the end-to-end delay of individual messages
for c1 before and after the first run of the scheduler (marked
with a dotted line), for the static scenario. For c1, treconf is at
simulation second 7.01 as at this time point the criteria for the
creation of a new stream are fulfilled (and the artificial delay,
which was introduced for visualization purposes, passed as
well). Noticeable is the increase in the end-to-end delay of the
first message from every sender directly after the rescheduling.
This happens because the open slot was initially placed at the
earliest possible position of the cycle, as shown in Figure 5
for schedule 0. After the rescheduling, this slot is still existent
but moved to a later position in the cycle. The first open time
tslot is placed by the scheduler at the position so that ∆slot is
zero. As already mentioned in Section V, the scheduler always
tries to place all slots as densely as possible. Thus, the slot
is moved between the slots of the new streams. This results
in additional new closing time at the start of the cycle and
is increasing the queue time and ∆slot. Every message that
follows afterward hits its designated slot directly, resulting in
no queue time and no added ∆slot and zero jitter.

The only difference between the static and sinusoidal
scenario regarding our investigations is the changing distance
and, as a result, changing ∆w. Comparing the wireless delay
∆w with the total delay ∆total, ∆w is three magnitudes lower
than ∆total. To be able to see the influence of the dynamic
rescheduling, Figure 8 shows not only the end-to-end delay,
but also the distance between c0 and c1, and how the slot size
changes with different distances for the sinusoidal scenario.

One drawback of the chosen scheduler can be seen in
Figure 5: For schedule 1 one can see that instead of multiple
small slots, which match the streams exactly, one big slot is
placed. This is a behavior by the scheduler, to avoid unnecessary
state switching of the ports. In the internal representation of
the scheduler, the slots are still exactly defined, so that another
stream is not scheduled during this slot, as it would result in
a collision. Due to this too big slot scheduled by TSNSCHED,
even with a later arrival time, there is still enough time left in
the slot so that the transmission can be transmitted. Only with
the last stream in the cycle, this would be a problem.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed hierarchical cooperative Time
Sensitive Networking (TSN) as an approach for cooperating
(rather than centrally managed) TSN networks via best-effort
wireless links. Our approach is both suited to mixed In-Vehicle
Network (IVN) and Vehicle to Everything (V2X) systems of
highly mobile nodes like platooning and generalizable to similar
systems requiring streams across cooperating TSN networks.

We also presented an approach for the simulative perfor-
mance evaluation of such systems and described an Open
Source reference implementation using well-established simu-
lation tools.

We concluded with the results of a proof of concept
evaluation to demonstrate the feasibility and dynamic adaptivity
of our approach.

In future work, we plan to investigate more advanced
scheduling techniques to increase the utilization of the IVN,
which will also be increased to real scale. For this a different
scheduler will be necessary.

REFERENCES

[1] “Time-Sensitive Networking Profile for Automotive In-Vehicle Ethernet
Communications,” IEEE, Draft Standard P802.1DG/D4.0, Jul. 2024.

[2] R. Debnath, M. S. Akinci, D. Ajith, and S. Steinhorst, “5GTQ: QoS-
Aware 5G-TSN Simulation Framework,” in 2023 IEEE 98th Vehicular
Technology Conference (VTC2023-Fall), IEEE, Oct. 2023.

[3] M. Segata et al., “Multi-Technology Cooperative Driving: An Analysis
Based on PLEXE,” IEEE Transactions on Mobile Computing, vol. 22,
no. 8, pp. 4792–4806, Aug. 2023.

[4] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE Communi-
cations Standards Magazine, vol. 6, no. 4, pp. 8–13, Dec. 2022.

[5] K. Zanbouri, M. Noor-A-Rahim, J. John, C. J. Sreenan, H. V. Poor,
and D. Pesch, “A Comprehensive Survey of Wireless Time-Sensitive
Networking (TSN): Architecture, Technologies, Applications, and Open
Issues,” arXiv, cs.RO 2312.01204, 2023.

[6] Z. Luo et al., “Hierarchical Computing Network Collaboration Architec-
ture for Industrial Internet of Things,” in 2022 IEEE 28th International
Conference on Parallel and Distributed Systems (ICPADS), vol. 6, IEEE,
Jan. 2023, pp. 57–64.

[7] D. Puthal, S. Mohanty, S. Wilson, and U. Choppali, “Collaborative Edge
Computing for Smart Villages,” IEEE Consumer Electronics Magazine,
vol. 10, no. 3, pp. 68–71, May 2021.

[8] P. Karle et al., “EDGAR: An Autonomous Driving Research Platform –
From Feature Development to Real-World Application,” arXiv, cs.RO
2309.15492, 2023.

[9] D. Andronovici, I. Turcanu, J. Bigge, and C. Sommer, “Cross-Validating
Open Source In-Vehicle TSN Simulation Models With a COTS Hardware
Testbed,” in 2024 IEEE Vehicular Networking Conference (VNC), IEEE,
May 2024, pp. 172–179.

[10] J. Zou, X. Dai, and J. A. McDermid, “reTSN: Resilient and Efficient
Time-Sensitive Network for Automotive In-Vehicle Communication,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 42, no. 3, pp. 754–767, Mar. 2023.

[11] Z. Zhou, J. Lee, M. S. Berger, S. Park, and Y. Yan, “Simulating TSN
traffic scheduling and shaping for future automotive Ethernet,” Journal
of Communications and Networks, vol. 23, no. 1, pp. 53–62, Feb. 2021.

[12] D. S. Buse, M. Schettler, N. Kothe, P. Reinold, C. Sommer, and F.
Dressler, “Bridging Worlds: Integrating Hardware-in-the-Loop Testing
with Large-Scale VANET Simulation,” in 14th IEEE/IFIP Conference
on Wireless On demand Network Systems and Services (WONS 2018),
Isola 2000, France: IEEE, Feb. 2018, pp. 33–36.

[13] M. K. Atiq, R. Muzaffar, O. Seijo, I. Val, and H.-P. Bernhard, When
IEEE 802.11 and 5G Meet Time-Sensitive Networking, 2022.

[14] O. Seijo, X. Iturbe, and I. Val, “Tackling the Challenges of the Integration
of Wired and Wireless TSN With a Technology Proof-of-Concept,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 10, pp. 7361–7372,
Oct. 2022.

[15] G. Durisi, T. Koch, and P. Popovski, “Toward Massive, Ultrareliable, and
Low-Latency Wireless Communication With Short Packets,” Proceedings
of the IEEE, vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[16] A. B. D. Kinabo, J. B. Mwangama, and A. A. Lysko, “Towards Wi-Fi-
based Time Sensitive Networking Using OMNeT++/NeSTiNg Simulation
Models,” in 2021 International Conference on Electrical, Computer and
Energy Technologies (ICECET), IEEE, Dec. 2021.

[17] I. Turcanu and C. Sommer, “Poster: Potentials of Mixing TSN Wired
Networks and Best-Effort Wireless Networks for V2X,” in 2021 IEEE
Vehicular Networking Conference (VNC), IEEE, Nov. 2021, pp. 135–136.

[18] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” in 21st
IEEE International Conference on Intelligent Transportation Systems
(ITSC), IEEE, Nov. 2018.

[19] A. C. T. dos Santos, B. Schneider, and V. Nigam, “TSNSCHED:
Automated Schedule Generation for Time Sensitive Networking,” in
2019 Formal Methods in Computer Aided Design (FMCAD), IEEE, Oct.
2019, pp. 69–77.


