hensel2017new
Abstract
The practical worth of models of technical processes depends on their accuracy, that is, the difference between model outputs and real measurements. For minimizing these differences, process identification methods are used. In this article, coordination software for process identification is presented which has the unique feature that it allows the integration of models that have been created with external tools, for example, Matlab or Python scripts. There is no need to transform the models into another type of software format to use the common identification coordinator. The concept of the software is described and two examples for the coupling with external simulation software are given. Additionally, this article contains a detailed case study of the parameter identification of two models using that identification coordination software. This highlights the benefit of the new coordination software regarding similar work flow for different model types. The modeled physical subject is the thermal behavior of an actuator strut.
Quick access
- Original Version (at publishers web site)
- BibTeX
Contact
- Burkhard Hensel
- Steffen Schroeder
- Klaus Kabitzsch
BibTeX reference
@article{hensel2017new,
author = {Hensel, Burkhard and Schroeder, Steffen and Kabitzsch, Klaus},
title = {{New Coordination Software for Parameter Identification Applied to Thermal Models of an Actuator Strut}},
journal = {Journal of Computational Engineering},
doi = {10.1155/2017/3169785},
issn = {2356-7260, 2314-6443},
month = {October},
pages = {1--14},
publisher = {Hindawi},
volume = {2017},
year = {2017},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
The following applies to all papers listed above that have IFIP copyrights: © IFIP, (YEAR). This is the author's version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL#, ISS#, (DATE)}, http://IFIP DL URL.