lobato2024dynamic
Abstract
Due to the increased computational capacity of Connected and Autonomous Vehicles (CAVs) and concerns about transferring private information, storing data locally and moving network computing to the edge is becoming increasingly appealing. This makes Federated Learning (FL) appealing for CAV applications. However, the synchronous protocols used in FL have several limitations, such as low round efficiency. In this context, this work presents FALCON, a semi-synchronous protocol for FL based on the link duration. FALCON leverages data periodically transmitted by CAVs to compute link duration and establish a dynamic temporal synchronization point. Additionally, FALCON includes a client selection mechanism that considers the local model versions and models with higher local loss. FALCON reduces the communication rounds and the number of selected clients while maintaining the same level of accuracy for FL applications.
Quick access
Contact
- Wellington Viana Lobato Junior
- Joahannes B. D. da Costa
- Allan Mariano de Souza
- Denis Rosário
- Christoph Sommer
- Leandro Aparecido Villas
BibTeX reference
@inproceedings{lobato2024dynamic,
author = {Lobato Junior, Wellington Viana and da Costa, Joahannes B. D. and de Souza, Allan Mariano and Ros{\'{a}}rio, Denis and Sommer, Christoph and Aparecido Villas, Leandro},
title = {{Dynamic Semi-Synchronous Federated Learning for Connected Autonomous Vehicles}},
booktitle = {XLII Simp{\'{o}}sio Brasileiro de Redes de Computadores e Sistemas Distribu{\'{i}}dos (SBRC 2024)},
address = {Niter{\'{o}}i, Brazil},
month = {May},
year = {2024},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
The following applies to all papers listed above that have IFIP copyrights: © IFIP, (YEAR). This is the author's version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL#, ISS#, (DATE)}, http://IFIP DL URL.