
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation

ZHUOXIAO MENG, Technical University of Munich, Germany and Huawei Munich Research Center, Germany

MINGYUE GAO, Huawei Munich Research Center, Germany

MARGHERITA GROSSI, Huawei Munich Research Center, Germany

ANIBAL SIGUENZA-TORRES, Technical University of Munich, Germany and Huawei Munich Research Center,

Germany

STEFANO BORTOLI, Huawei Munich Research Center, Germany

CHRISTOPH SOMMER, TU Dresden, Germany

ALOIS KNOLL, Technical University of Munich, Germany

Parallel and distributed computing enable the execution of large and complex simulations. Yet, the usual separation of (headless)
simulation execution and (subsequent, offline) output analysis often renders the simulation endeavor long and inefficient. Recently,
Visual Interactive Simulation (VIS) tools and methods that address this end-to-end efficiency are gaining relevance, offering in-situ
visualization, real-time debugging, and computational steering. Here, the typically distributed computing nature of the simulation
execution poses synchronization challenges between the headless simulation engine and the user-facing frontend required for Visual
Interactive Simulation. To the best of our knowledge, state-of-the-art synchronization approaches fall short due to their rigidity
and inability to adapt to real-time user-centric changes. This paper introduces a novel adaptive algorithm to dynamically adjust
the simulation’s pacing through a buffer-based framework, informed by predictive workload analysis. Our extensive experimental
evaluation across diverse synthetic scenarios illustrates our method’s effectiveness in enhancing runtime efficiency and synchronicity,
significantly reducing end-to-end time while minimizing user interaction delays, thereby addressing key limitations of existing
synchronization strategies.

CCS Concepts: • Computing methodologies→Modeling and simulation; Interactive simulation; Real-time simulation;
Simulation tools.

Additional Key Words and Phrases: Visual interactive simulation, In-situ visualization, Human-in-the-loop simulation, Adaptive
simulation synchronization

ACM Reference Format:
Zhuoxiao Meng, Mingyue Gao, Margherita Grossi, Anibal Siguenza-Torres, Stefano Bortoli, Christoph Sommer, and Alois Knoll. 2024.
Adaptive Synchronization and Pacing Control for Visual Interactive Simulation. 1, 1 (June 2024), 24 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Authors’ addresses: Zhuoxiao Meng, Technical University of Munich, Department of Informatics, Munich, Germany and Huawei Munich Research Center,
Intelligent Cloud Technologies Laboratory, Munich, Germany; Mingyue Gao, Huawei Munich Research Center, Intelligent Cloud Technologies Laboratory,
Munich, Germany; Margherita Grossi, Huawei Munich Research Center, Intelligent Cloud Technologies Laboratory, Munich, Germany; Anibal Siguenza-
Torres, Technical University ofMunich, Department of Informatics, Munich, Germany andHuaweiMunich Research Center, Intelligent Cloud Technologies
Laboratory, Munich, Germany; Stefano Bortoli, Huawei Munich Research Center, Intelligent Cloud Technologies Laboratory, Munich, Germany,
{firstname.lastname}@huawei.com; Christoph Sommer, TU Dresden, Faculty of Computer Science, Dresden, Germany, cms-labs.org/people/sommer;
Alois Knoll, Technical University of Munich, Department of Informatics, Munich, Germany, k@tum.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive version was published in:

ACM Transactions on Modeling and Computer Simulation Digital library entry → https://doi.org/10.1145/3673898

https://doi.org/10.1145/3673898

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

1 INTRODUCTION

Analysis and visualization of simulation data are typically performed after the simulation is completed (post-hoc),
without human interaction during the execution (e.g., [31]). To minimize the number of simulations, users often
configure the simulation to output as much data as possible, which can be a lengthy and resource-intensive process,
especially in a cloud environment [35].

Visual Interactive Simulation (VIS) [26] offers a promising solution to this problem. It can generate a dynamic, real-
time display of simulations, allowing user interaction and control as the simulation progresses. Unlike the traditional
method, which requires extensive data storage, users can customize the simulation output on-the-fly, for example by
filtering or implementing user-defined functions. This process, known as in-situ visualization [17, 20], facilitates rapid
and free-form exploration of the simulated domain. In addition, VIS allows users to promptly alter the dynamics of the
running simulation, such as changing parameters and conducting "what-if" explorations, without having to restart
the simulation from scratch [25]. Recent research has demonstrated the effectiveness of carefully chosen visualization
designs and interaction techniques in allowing users to explore urban transportation [33], fluid dynamics [16], and
networked systems [21], among others.

Maintaining a consistently updated representation of the simulation state in the visualization application is of
utmost importance. This ensures an appropriate user experience, preventing user actions from being based on outdated
simulation states. At the same time, it is important to control the overhead associated with synchronization in order
to maintain the best possible system performance [28]. Striking an adaptive balance between user experience and
overhead is therefore an important concern.

At present, synchronization in VIS adheres to a conservative step-based methodology, following either a sequential
or a parallel model [7]. In the sequential model, the simulation and visualization processes alternate on the operational
timeline [2] and run one after the other. While this ensures precise synchronization, it does so at the expense of
system efficiency [20]. Conversely, the parallel model offers improved system performance by allowing simulation and
visualization processing to occur simultaneously. However, it introduces the challenge of maintaining the synchronicity.
A common approach, as detailed in Section 3.2, is to synchronize the simulation and visualization at regular time
intervals. However, the longer the interval, the greater the risk of desynchronization between the two processes,
resulting in a poor Quality of Experience (QoE) for the user.

This paper presents an adaptive synchronization strategy that utilizes runtime data to adjust the simulation’s pacing
to the visualization task workload. The implementation is supported by a novel buffer-based framework that enables
dynamic adjustment of synchronization points through buffer management. Experimental evaluation using synthetic
yet generic test cases shows that the proposed approach achieves optimal system performance and improves interaction
efficiency compared to the current state-of-the-art. Our approach is also characterized by its self-adaptive nature, which
requires less prior knowledge about the simulated scenarios, making it valuable in diverse situations. In addition,
the proposed framework is notable for its ease of implementation, extension, and backward compatibility with the
state-of-the-art methods, allowing for seamless integration into existing VIS setups.

The structure of this paper is as follows: Section 2 provides the background and motivation for our research. Section
3 examines related work, with an emphasis on the conventional method referred to as rigid synchronization. In Section
4, we present a formulation for evaluating synchronization methods in VIS systems. Section 5 presents our novel
synchronization approach, explaining the architecture and strategy in detail. Section 6 presents a comprehensive

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 3

evaluation of our approach using various synthetic scenarios. Finally, in Section 7, we summarize the contributions of
our study, discuss its limitations, and suggest future research directions.

2 BACKGROUND ANDMOTIVATION

Our research initiative is rooted in the development and application of a large-scale vehicle traffic simulation service
platform. This platform hosts a city-scale timestepped microscopic traffic simulator in the backend, coupled with a
client application, hereafter referred to as the Visualizer. This Visualizer is designed to provide support for real-time
simulation data analysis and visualization, establishing the platform as an efficient and intuitive tool for city-scale
urban traffic management studies.

Targeting metropolis-scale, the simulation models involve millions of agents such as vehicles and pedestrians. A naive
approach of transferring and rendering the full simulation state’s updates is computationally burdensome, resource
intensive, and yields unsatisfactory performance. Therefore, in order to support real-time simulation data visualization
and analysis, an interactive data reduction strategy is employed, allowing users to selectively investigate simulation
data based on its contextual relevance. For example, one of the main features of the Visualizer is to allow users to change
the Field of View (FoV) by zooming, panning, and focusing. By default, only agents within the FoV are considered
relevant and will be displayed, greatly reducing the amount of data transferred and processed. In addition, users can
customize the resolution and level of detail in the visualization to meet their specific needs, displaying different levels of
aggregated analytics relevant for the specific FoV. For example, when visualizing the whole city or a very large district,
only macroscopic traffic metrics would be relevant to provide the required overview of the simulated city. Thus, users
can choose to display coarser and lower resolution analytics, which can further reduce the workload on the Visualizer.

In addition, the Visualizer allows users to interactively define and select relevant metrics for computation, and to
adjust simulation parameters at runtime, such as performing "what-if" experiments using the well-known simulation
cloning paradigm [13]. Therefore, the capability of supporting an efficient interaction of users with the large-scale
headless simulation running in the background is pivotal in this platform, making synchronization between the engine
and the Visualizer a key factor in the usability and user QoE. The high computational demands on both the Simulator
and the Visualizer suggest that the sequential synchronization (see Section 1) would prolong runtimes, and a parallel
operation of the two is preferable. However, a parallel approach can introduce interaction delays in the VIS, as detailed
in Section 4. For instance, when users alter the range of the spatial filter by switching their FoV, newly selected agents
will not appear immediately due to the simulation time lag between the user’s view time and the actual simulation
time. While this delay is acceptable if it does not impede decision making, it should be minimized to improve the user
experience.

3 RELATED WORK

3.1 Tightly and Loosely Coupled VIS

Since the 1990s, the field of computational steering, which integrates analysis and visualization into simulation
workflows, has significantly evolved [14]. At this early stage, particularly due to the small scales of simulated scenarios,
the dominant method was the Tightly Coupled approach [17], also termed as the Synchronous approach in other
literature [2, 15]. In this method, the visualization code is embedded in the simulation code and only one process is
allowed to use computational resources at any given time, thereby enforcing a step-by-step execution of simulation and
visualization. Naturally, this leads to the implementation of sequential synchronization. Despite its inefficiency in terms

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

of end-to-end performance, the simplicity [17] of this approach leads to its widespread adoption in various open-source
frameworks such as SCIRun [27], Libsim [30], Paraview Catalyst [1], and commercial solutions like AWS SimSpace
Weaver1, which remain in use today.

The 2000s witnessed the introduction of advances in in-situ visualization and steering for large-scale simulations
on supercomputers [24, 32]. During this time, the Loosely Coupled approach, also known as the Asynchronous
approach, emerged as a response to the high computational demands of both visualization and simulation [15, 17]. The
loosely coupled approach involves the allocation of dedicated computational resources to visualization and simulation
independently. This enables them to run simultaneously, providing improved flexibility and scalability compared to the
tightly coupled approach. However, it also introduces the requirement for tight coordination of workflows between
visualization and simulation, which requires careful synchronization, as explained in [15].

3.2 Rigid Synchronization

In loosely coupled VIS systems, a prevalent synchronization strategy involves aligning the simulation and visualization
processes at regular intervals, a method we refer to as Rigid Synchronization in this paper. As illustrated in Fig. 1,
this approach involves defining, at the start of the simulation and throughout the entire duration of the simulation, a
synchronization interval duration 𝑇rigid, representing the simulation time span between synchronization points. At
each synchronization point, the simulation sends simulation data from its most recent interval to the Visualizer, while
the Visualizer forwards commands related to the user interactions to the simulation. After each synchronization point,
the simulation and visualization proceed simultaneously, each for a fixed period of 𝑇rigid, and then wait until both have
finished in order to proceed with the next. Notably, this results in the simulation time always being at least 𝑇rigid ahead
of the visualization.

Examples of this approach include the use of MPI barriers for synchronization in turbulent transition simulations by
Buffat et al. [6] and the definition of "output-steps" (which serves as their synchronization interval) in the interactive
simulation rendering framework proposed by Kawamura et al. [16]. However, in these studies, visualization components
and data analysis tasks are configured before the simulation begins. User interaction is limited to only modifying
simulation parameters, which does not significantly change the visualization workload. Thus, the workload of the
entire system is typically predictable before the execution.

Our scenario significantly differs due to its dynamic nature, where visualization demands can shift in real-time in
response to user interactions, presenting challenges in applying rigid synchronization effectively. First, a suitable 𝑇rigid
is difficult to set beforehand. Correct choice of 𝑇rigid is strongly affected by the particular characteristics of the system’s
workload. Setting it too short may not provide sufficient asynchronicity and negatively impact the runtime performance
due to frequent synchronization, whereas setting it too long could result in significant temporal disparities between the
visualization and simulation processes. Second, the fixed nature of the synchronization interval does not accommodate
the fluctuating demands of user interactions. An interval that is optimal in one phase may become less so in another
one, as the visualization tasks can change due to a user’s real-time visualization requirements. Therefore, we need a
more flexible approach than what rigid synchronization with a one-size-fits-all strategy can provide.

1https://aws.amazon.com/simspaceweaver/ Retrieved: 18.04.2024

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 5

𝑡𝑠𝑖𝑚 0 𝑇𝑠𝑡𝑒𝑝 𝑇𝑟𝑖𝑔𝑖𝑑 2𝑇𝑟𝑖𝑔𝑖𝑑

2𝑇𝑟𝑖𝑔𝑖𝑑- 𝑇𝑠𝑡𝑒𝑝

Simulator execution time for a timestep Synchronization point

Visualizer execution time for a timestep

𝑡𝑣𝑖𝑠 0 𝑇𝑠𝑡𝑒𝑝 𝑇𝑟𝑖𝑔𝑖𝑑 2𝑇𝑟𝑖𝑔𝑖𝑑

2𝑇𝑟𝑖𝑔𝑖𝑑- 𝑇𝑟𝑖𝑔𝑖𝑑

Visualizer Idle Time 𝑇𝑣𝑖𝑠_𝑖𝑑𝑙𝑒

Largest 𝑑

Smallest 𝑑

Fig. 1. Timelines for the simulation timestamp (𝑡sim), the visualization timestamp (𝑡vis), and the largest, smallest interaction delay in
a rigid synchronization approach.

3.3 Other Synchronization approaches

An alternative asynchronous strategy involves skipping over older simulation data to display only the most recent
updates, ensuring the visualization remains synchronized with the ongoing simulation. This allows the simulation to
proceed uninterrupted. While this method can achieve the optimal runtime performance, it may lead to the omission of
important intermediate updates. A notable example is the in-situ visualization pipeline presented by Krüger et al. [18]
in 2022 for neuronal network simulations. Another example can be found in [3]. However, the effectiveness of this
approach, like rigid synchronization, relies on both the visualization and simulation components having predictable
and consistent workloads. For example, Krüger et al. [18] argued that in their specific scenario, the processing of
visualization at each time could generally be completed before the data exchange deadline with the simulation, resulting
in minimal instances of data loss. However, they also acknowledged that this is a tentative assumption that needs
to be further explored in future work. Particularly in scenarios like ours, where the demands on visualization can
vary significantly, this strategy might result in an unmanageable temporal gap between simulation and visualization,
potentially leading to uncontrollable data loss.

In the paper introducing DAR-CI [23], the API used in our platform for traffic simulation control, a discrete event-
based synchronization method is proposed. This method allows simulation and connected client applications to run
asynchronously, with client commands mapped to external events in the simulation’s update logic. However, to prevent
delays in the execution of user commands, users are required to send a pause event at a predetermined simulation
time. This approach is not feasible for our use case due to the unpredictable timing of user commands, as we cannot
anticipate when or what type of command users might issue.

We have also explored alternative simulation frameworks, including Dynamic Data Driven Applications Systems
(DDDAS) [8] and Digital Twin (DT) systems [5], which inherently require simulations to exchange information with
external data sources, thus making synchronization a necessary component to consider. The majority of these applica-
tions applied a synchronization approach prevalent in the co-simulation domain [12] characterized by conservative
and optimistic synchronization with rollback capabilities [11]. Innovations like [4], designed to save synchronization
energy for distributed DDDAS, are not relevant for our targeted VIS use case.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

3.4 Adaptive Approach in VIS

The application of adaptive techniques in simulations involving online data processing and visualization has also been
explored. However, these studies focus primarily on aspects such as data reduction [9, 19, 36] and resource allocation
[10, 20, 29], with the main goal of improving overall performance, i.e., minimizing end-to-end time. Interactive elements
are typically not integrated or required in these approaches. While these studies have different goals than ours, they
demonstrate the feasibility of predicting runtime conditions and adapting accordingly in VIS systems.

4 PROBLEM FORMULATION

The objective of this work is to propose a novel synchronization approach that balances runtime efficiency with
interaction timeliness, thereby enhancing user QoE. We measure this balance using two conflicting metrics:

(1) Visualizer Idle Time (𝑇vis_idle): This measures the duration (wall-clock time) the Visualizer remains idle
while waiting for new simulation data (an example is illustrated in Fig. 1). Lowering 𝑇vis_idle is vital for
uninterrupted visual display and overall system performance. However, lowering it to zero may not always be
feasible given the limitation of simulation performance. It is important to clarify that enhancing the performance
of the simulation itself is not within the focus of this paper.

(2) Average Delay of Interaction (𝑑): This represents the synchronicity between the Visualizer and the simulation.
We identify each interaction with an index 𝑖 . The timestamp the interaction is triggered on the Visualizer side
is denoted as 𝑡vis𝑖 , and the simulation timestamp it applies to is denoted as 𝑡sim𝑖 . The interaction delay is thus
quantified as 𝑑𝑖 = 𝑡sim𝑖 − 𝑡vis𝑖 . We denote the average value of all interactions’ delay as 𝑑 . Minimizing 𝑑 ensures
timely and relevant user decisions.

We thus define our challenge as a Multi-Objective Optimization (MOO):

min
𝑥∈𝑋

(
𝑇vis_idle (𝑥) , 𝑑 (𝑥)

)
subject to: 𝑑𝑖 ≤ 𝑑max (1)

In this context, 𝑋 represents the collection of possible synchronization techniques. Every 𝑥 is an instance of a distinct
synchronization approach (e.g, Rigid Synchronization) accompanied by its unique set of parameters (e.g., 𝑇rigid). To
ensure that critical decision-making interactions are not delayed, a constraint called the maximal acceptable interaction

delay is introduced, denoted as 𝑑max. This constraint ensures that the delay of any interaction during a run does not
exceed a certain threshold.

Reducing both the visualizer’s idle time𝑇vis_idle and the average delay 𝑑 at the same time poses a significant challenge,
given that they typically exhibit an inverse correlation. In other words, a decrease in one tends to result in an increase
in the other, and vice versa. The two extremes of the inverse relationship are exemplified by sequential synchronization
and post-hoc data processing. The former approach, sequential synchronization, reduces the delay to zero, i.e., 𝑑𝑖 = 0,
implying an immediate user interaction. However, this method leads to the maximum𝑇vis_idle, which could be equivalent
to the entire simulation execution time (excluding the data transfer time), due to the lack of parallel processing. On the
other hand, post-hoc data processing represents the other extreme, where 𝑇vis_idle is virtually non-existent since all
data is instantly available. Nonetheless, in this scenario, the interaction delays are deemed to be infinitely large as the
simulation has already been completed.

Regarding Rigid Synchronization (Section 3.2), adjusting the input parameter 𝑇rigid is typically how users balance
these two metrics. The delay of each interaction is fixed with a predetermined synchronization interval 𝑇rigid, and the
larger 𝑇rigid, the greater the 𝑑 . As shown in Fig. 1, the largest interaction delay occurs when an interaction is made
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 7

after the first simulation timestep of a synchronization interval, which can be calculated as 2𝑇rigid −𝑇step. Here, 𝑇step
represents the duration of a simulation timestep. On the other hand, the smallest interaction delay is encountered when
an interaction is made at the end of a synchronization interval, which is equal to 𝑇rigid. Assuming that an interaction
occurs at each timestep, the average delay 𝑑 is calculated as 3𝑇rigid−𝑇step

2 . With respect to𝑇vis_idle, as depicted in Fig. 1, it
embodies the aggregate of all idle durations within each synchronization interval, and it is dictated by the workload
balance between the Visualizer and the simulation within each 𝑇rigid. Its exact value cannot be calculated without
knowledge of the specific simulated scenario being considered. However, in general, a lengthier𝑇rigid typically suggests
a greater level of parallelism, which results in a more balanced distribution of workload and consequently, a reduced
𝑇vis_idle. The experiment carried out in this research corroborated this observation as well (Section 6.4).

In our suggested buffer-based synchronization method (refer to Section 5 for more details), the idle time of the
Visualizer is a result of its capability to process simulation data faster than the simulation produces it. Our approach
to mitigate this, without accelerating the simulation, is to let the simulation run further during its faster stage, i.e.,
generating simulation data for later use while the Visualizer, for example, is performing some heavy tasks. The more
we allow the simulation to run in advance, the more data can be buffered for the Visualizer, subsequently reducing
the 𝑇vis_idle. However, this also leads to a larger time difference between the frontend and the backend, resulting in
prolonged user interaction delays (𝑑), and vice versa. Thus, the extent to which the simulation is allowed to advance, an
input parameter termed as buffer capacity, can be adjusted by users to fine-tune the balance between 𝑇vis_idle and 𝑑
according to their preference.

From our perspective, addressing this MOO (Eq. 1) issue directly, especially pinpointing the ideal synchronization
and its optimal parameters using an analytical model without running the system, is not practical. Because the true
outcomes of the metrics, specifically 𝑇vis_idle and 𝑑 , are significantly affected by the execution performance at each
simulation time of the simulation and visualization. Developing a model to calculate these is overly challenging due to
the excessive correlated input factors, including the details of the current scenario, the variable workload throughout the
process, and the hardware specifications such as CPU and network capabilities. Furthermore, it is even more impractical
and error-prone to formulate a mathematical model for user interactions considering their random nature. Hence,
this paper suggest an auto-adapt strategy, i.e., a heuristic approach, that monitors the system during runtime and
consistently fine-tunes the synchronization parameter accordingly to meet the objectives.

5 ADAPTIVE SYNCHRONIZATION AND SIMULATION PACING CONTROL

In this work we target to better support interactive usage of simulation for exploratory endeavours, with the further
goal of addressing the problem at scale, while keeping the system as generally reusable and extensible as possible.
Hence, the most fitting option is to design a VIS framework that loosely couples simulation engine and the Visualizer.
Fig. 2 illustrates the overall design of the proposed architecture. The Simulator and the Visualizer are presented as
separate logical components. The coordination between the Visualizer and the Simulator is handled by an intermediary
component called Controller. Within the Controller, the Interaction Collector and Simulation Executor are
responsible for receiving interaction control commands from users and the step-based execution of the simulation
engine respectively. The data exchange and synchronization are mediated by a dynamically adjustable Bounded Buffer.
Namely, the simulation can be triggered by the Simulation Executor only if the Bounded Buffer has space to receive the
corresponding data from the simulation engine. The Pacing Controller utilizes therefore real-time insights related
to simulation and interaction demands to adjust the capacity of the Bounded Buffer based on specific policy, thereby

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

Bounded Buffer

Interaction Collector Simulation Executor

Pacing Controller

Buffer Status
Monitor

Pacing
Predictor

Decision
Maker

Visualizer Simulator

Controller

Buffer Has Space

 Pacing Data Buffer Capacity

 Interaction

Data Frame

Fig. 2. Overview of the proposed architecture.

Algorithm 1: Pseudocode for Simulator Workflow
Input :updateInterval Δ𝑡
Initialization :currentTime 𝑡𝑠𝑖𝑚 ← 𝑡init;

interactions 𝐼 ← 𝑁𝑜𝑛𝑒

1 while simulation is running do
2 𝐼 ← wait_for_signal();
3 apply_interactions(𝐼);
4 𝑡𝑠𝑖𝑚 ← 𝑡𝑠𝑖𝑚 + Δ𝑡 ;
5 df ← simulation_run_until(𝑡𝑠𝑖𝑚);
6 reply_with(df);
7 end

Algorithm 2: Pseudocode for Visualizer Workflow
Input :updateInterval Δ𝑡
Initialization :currentTime 𝑡𝑣𝑖𝑠 ← 𝑡init;

interactions 𝐼 ← 𝑁𝑜𝑛𝑒

1 while simulation is running do
2 df ← request_dataframe(𝐼);
3 𝑡𝑣𝑖𝑠 ← 𝑡𝑣𝑖𝑠 + Δ𝑡 ;
4 𝐼 ←render_process(df , 𝑡𝑣𝑖𝑠) ;
5 end

controlling also the simulation pacing. In this section, we will provide a detailed explanation of the functionality of
each component, as well as the adaptive pacing policy proposed in this study.

5.1 Simulator and Visualizer Workflow

In our framework, both the Simulator and the Visualizer are involved in a repetitive, cyclic process. Each cycle involves
advancing the simulation time by a fixed interval, denoted as Δ𝑡 , which is predetermined and by default equal to one
simulation step, i.e., 𝑇step.
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 9

The Simulator workflow execution loop, as outlined in Algorithm 1, starts with waiting for a trigger signal. Once the
signal is received, the simulation executes the interaction actions based on the incoming request and continues for a
duration of interval Δ𝑡 . Upon completion, a data unit called Data Frame (df) including the desired simulation output
is returned.

The Visualizer also operates based on synchronous blocking calls, as shown in Algorithm 2. Within each loop, it
sends out a message with the latest user interaction control commands 𝐼 from the last period and receives a df in
response. Notably, the interaction control message can be empty. The Visualizer can then processes the received df to
update its display and capture new user interactions. Both the Simulator and the Visualizer repeat their workflow until
the simulation concludes or the user terminates the process.

The design goal here is to keep the system as unobtrusive as possible and reduce the need for altering the Simulator
and Visualizer codebases. Direct coupling of the Visualizer and Simulator following this workflowwould lead to the rigid
synchronization approach (Section 3.2), with Δ𝑡 serving as the synchronization interval𝑇rigid. One of the distinguishing
features of this work is the introduction of the Controller design that serves as a middleware, linking the Visualizer
with the Simulator. This component is designed to channel user interactions (𝐼) from the Visualizer to the Simulator
and vice-versa for simulation data (df), while handling the synchronization between the two.

5.2 Data Exchange and Synchronization Mechanism

In this section we explain how the Controller interacts with the Simulator and the Visualizer. The Simulator progresses
by Δ𝑡 upon receiving a trigger message that includes user interaction commands and returns a df as the response. As
depicted in Fig. 2, these trigger messages are initiated by the Simulation Executor within the Controller, with each
message including all the interactions accumulated by the Interaction Collector. The Bounded Buffer is implemented
as a thread-safe queue. As long as there is available space in the buffer, the Simulation Executor can keep sending
trigger messages and enqueue the received df in the queue. Maintaining the sequence of df sent from the Simulator to
the Controller is essential for the implementation, yet it is not challenging to achieve. For example, TCP and several
open-source libraries such as gRPC2 (which we used) and ZeroMQ3 can offer this guarantee.

On the other hand, during each interaction step Δ𝑡 , the Visualizer sends an interaction message to the Controller
and receives the oldest df dequeued from the Bounded Buffer (i.e., with FIFO order). During each cycle, both the
Simulator and the Visualizer independently progress their computation for an identical duration (Δ𝑡) and execute a
single enqueue-dequeue process. Thus, the timestamp of the dequeued df consistently matches the timestamp of the
Visualizer’s request.

The number of df accumulated in the buffer, denoted as 𝑛df, reflects the time lag of the Visualizer behind the
Simulator. The delay of an interaction can thus be quantified as 𝑛df × Δ𝑡 , where 𝑛df is the buffer size when the
interaction request reaches the Controller. When the buffer becomes full, signaling that the simulation is significantly
ahead of the Visualizer, the Controller will temporarily halt the initiation of new simulation updates while the visualizer
continues its processing. It becomes therefore intuitive that the capacity of the Bounded Buffer determines the maximal

acceptable interaction delay (𝑑max) in the system. Storing extra df (s) in the buffer offers the benefit of averting potential
future data shortages. Should there come a time when the Visualizer’s rate of consuming df surpasses the rate at which
the simulation generates it, the df already in storage can be sent back to the Visualizer immediately upon request,
effectively eliminating any waiting periods.

2https://grpc.io/ Retrieved: 18.04.2024
3https://zeromq.org/ Retrieved: 18.04.2024

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

Unlike rigid synchronization, which strictly synchronizes and transfers data at predetermined, coarse-grained time
intervals, the buffer-based approach adds flexibility by adjusting the delay to some extent based on the actual system
load. The interaction delay occurs and increases only when the buffer starts to fill and grow, i.e., when the simulation
actually runs faster than the visualization. As the simulation slows down, the 𝑛df decreases, resulting in a reduction of
the temporal gap and a more timely interaction. After the buffer is emptied, synchronization can occur at each Δ𝑡 , i.e.,
the finest synchronization unit, with minimal interaction delay and no negative impact on runtime performance.

However, if the Visualizer is constantly running slower than the simulation, the buffer will always be full. This
persistent state results in sustained maximum delays, but without any improvement in runtime efficiency, because the
overall system performance is still limited by the slow processing speed of the Visualizer. In this paper, this issue is
defined as the Overbuffering problem. To address it, in the following section, we present the Pacing Controller, which
is a component that can adaptively modify the buffer capacity during runtime according to the real-time workload.

5.3 Simulation Pacing Control

The Pacing Controller is responsible for modifying the capacity of the Bounded Buffer in order to regulate the pacing of
the simulation process. The underlying principle is to increase the buffer capacity (up to the maximum limit specified
by 𝑑max) when the visualization is expected to be faster than the simulation in the near future. This allows for more
simulation data to be stored in the buffer for later use, reducing the idle time the Visualizer will experience. However,
if the visualization is expected to be slower, or if the existing df (s) in the buffer are deemed sufficient for the near
future, the buffer capacity can be kept relatively small. This would slow down the simulation to match the pace of the
Visualizer, improving system responsiveness without sacrificing overall performance. Essentially, the overall system
approaches the maximal overall performance without affecting QoE.

As illustrated in Fig. 2, the Pacing Controller consists of three modules: the Buffer Status Monitor, the Pacing
Predictor, and the Decision Maker. The Buffer Status Monitor tracks runtime data such as the rate at which the
Simulator enqueues df (s) and Visualizer dequeues them, along with their respective counts. The Pacing Predictor is
the component to make heuristic predictions about the processing speed of the Simulator and Visualizer. Various time
series data prediction models, such as Exponential Smoothing, SARIMA, and LSTM can be applied for this purpose [22].

Notably, the arbitrary nature of user interactions poses a significant challenge for prediction accuracy of the
Visualizer’s workload. However, there would still exist a certain degree of consistency of workload patterns following
each interaction or group of interactions. As long as the interactions do not vary excessively andwith very high frequency,
which is uncommon in large-scale simulations, this consistency allows for sufficient predictability. Additionally, the
Pacing Predictor could potentially utilize the semantics of the interactions as supplementary information to enhance its
predictive accuracy. It is important to clarify that the specific methodologies for prediction are not the primary focus
of this work. Rather, our contribution lies in the conceptualization and implementation of the Pacing Predictor as a
component within the overall pacing control system.

After receiving the pacing predictions for both the Simulator and the Visualizer from the Pacing Predictor, the
Decision Maker is in a position to determine the buffer’s capacity. This dynamically determined capacity is key in
allowing the Simulator to match the pace of the Visualizer at runtime, overcoming the limitations of predefining a fixed
value for the entire run.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 11

Start

Run simulation for Tprocess

Simulation ends?

ndf >ndf_low?

Predict Buffer Status inTfuture

Tprocess == 0?

End

yes

Wait

yes

no

Tprocess = Δt

yes

no

Decide Tprocess

no

Fig. 3. Adaptive pacing policy workflow.

5.4 Adaptive Pacing Policy

In this section, we delve into the details of the adaptive pacing policy that is proposed in this study. The policy includes
a predefined input parameter called the desired buffer lower bound, denoted as 𝑛df_low. This parameter serves as a
safeguard, indicating the minimum quantity of df that ought to be maintained in the Bounded Buffer to avert data
shortages. The main objective of this policy is to control the simulation pacing in order to strike a balance between
two opposing objectives concerning the buffer states. First, it aims to keep the number of df in the Bounded Buffer
remains above the predefined 𝑛df_low. Second, it also aims to minimize the number of df in the Bounded Buffer, thereby
reducing the time lag between the Visualizer and the Simulator. The policy operates by constantly estimating the future
workloads for both the simulation and visualization process and adjusts the execution of the simulation based on these
predictions. The outcome of each decision is referred to as the simulation processing time, denoted by 𝑇process. This
value determines if the simulation should keep running, for how long, or if it should be paused.

The comprehensive flow chart of the proposed policy is illustrated in Figure 3. As shown, the simulation initially sets
𝑇process to Δ𝑡 , continuing until the current buffer size, i.e., 𝑛df, surpasses the predefined 𝑛df_low. The Pacing Predictor is
then employed to estimate the upcoming workload, specifically the processing time required for each Δ𝑡 by both the
Simulator and the Visualizer, for an upcoming period referred to as 𝑇future. These estimations are utilized to determine
the future states of the buffer, namely, the predicted buffer size at any future moment, denoted as 𝑛df_pre (𝑡), with 𝑡

ranging from 0 (i.e., the present) to 𝑇future. An example is illustrated in Fig. 4, which also highlights the significance of
taking into account the user-defined maximum buffer capacity (𝑑max/Δ𝑡) in these future buffer state calculations.

Based on the predictions of the buffer state, the policy determines the outcome value𝑇process. Specifically, the chosen
value should mark the transition point when the predicted buffer size goes from being below 𝑛df_low to consistently

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

𝑇𝑓𝑢𝑡𝑢𝑟𝑒
Predicted Simulation Time

𝒏𝒅𝒇_𝒍𝒐𝒘

𝒅𝒎𝒂𝒙/Δt

𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠0

𝑻+

Fig. 4. Illustration of a predicted buffer status in𝑇future and the decision of𝑇process

exceeding it, as shown in Fig. 4. We denote 𝑇+ as the set of subsequent timesteps preceding 𝑇future, at which the
predicted buffer size surpasses the 𝑛df_low:

𝑇+ ≔ {𝑡+ ∈ [0,𝑇future] | 𝑛df_pre (𝑡) ≥ 𝑛df_low,∀𝑡 ∈ [𝑡+,𝑇future]} (2)

and then the chosen value of 𝑇process is:

𝑇process =

𝑚𝑖𝑛{𝑇+}, if 𝑇+ ≠ ∅
𝑇future, otherwise

(3)

This suggests that before reaching this critical point (𝑇process), there is a possibility that the buffer will hold less data
than 𝑛df_low. Therefore, it is crucial to initiate the simulation without delay to prevent the upcoming buffer size from
shrinking more. However, from this point (𝑇process) until the end of the forecast period (𝑇future), the buffer storage is
expected to remain sufficient. Thus, executing the simulation for the period of 𝑇process ought to be adequate. Once the
simulation has been run for this length of time, a new prediction should be made to reassess the situation, avoiding
excessive data accumulation affecting the interaction delay. In terms of implementation, this is achieved by increasing
the capacity of the Bounded Buffer to its maximum limit (𝑑max/Δ𝑡) until the simulation is continuously triggered for
𝑇process/Δ𝑡 times.

It’s worth noting two particular circumstances of interest. The first involves a condition where the predicted buffer
size is consistently above 𝑛df_low throughout 𝑇future, i.e., 𝑇+ = [0,𝑇future] and 𝑇process = 0. This implies that the current
buffer already has sufficient data for the forthcoming period, possibly due to a gradual slowdown in the Visualizer over
time. Consequently, the simulation is commanded to wait, as is shown in Fig. 3. During this waiting time, predictions
are continuously updated as the Visualizer processes the cached df , until either a 𝑇process is determined or current
buffer size is below the 𝑛df_low. The second scenario occurs when the predicted buffer size at the end of 𝑇future is below
𝑛df_low, that is, 𝑛df_pre (𝑇future) < 𝑛df_low and consequently 𝑇+ = ∅, indicating a potential data shortage in the entire
𝑇future. The simulation is then allowed to continue at full speed throughout 𝑇future, i.e., 𝑇process = 𝑇future.

By periodically assessing and predicting the buffer’s state, this proposed policy aims to maintain an optimal balance:
minimizing the Visualizer idle time by avoiding an empty buffer, while also limiting the accumulation of excessive df ,
thereby ensuring efficient interaction while optimal runtime performance and accounting for the demands of real-time
visualization tasks. The choice of 𝑛df_low could intuitively reflect the user’s prioritization. A large value for 𝑛df_low
allows the Bounded Buffer to store more df most of the time, thus reducing the risk of data shortages. However, this
also means that there is an increase in interaction delays. On the other hand, a small value means a greater concern of
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 13

users for reducing interaction delays, but it also increases the likelihood of encountering data shortages more frequently.
As for the 𝑇future, it can also be an adaptive value. In our trials, we experimented with setting 𝑇future relevant to the
time interval between occurrences when the simulation needs to wait, yielding to satisfactory outcomes. Additionally,
factors such as prediction accuracy could also be used to further fine-tune 𝑇future and 𝑛df_low at runtime, although we
did not delve into such specifics.

6 EXPERIMENTAL EVALUATION

The experiments are carried out on the traffic simulation service platform we described in Section 2, with CityMoS [34]
serving as the back-end traffic simulator. CityMoS is a high-performance, cloud-enabled, and distributed microscopic
traffic simulator that is well suited for handling large-scale scenarios. The simulation follows a timestep-based approach,
with each step, i.e., 𝑇step, configured to 250ms by default, as used in our experiment.

This case study comprehensively evaluates three synchronization approaches – Rigid Synchronization, the proposed
buffer approach but with fixed capacity, and the proposed buffer approach with the adaptive pacing policy – in four
synthetic yet generic scenarios. This section provides a detailed description of the setup and the results of the evaluation.

6.1 Experimental Design

In order to systematically explore the key characteristics of the Visualizer workload and to have a comprehensive
coverage of its patterns, experimental scenarios are constructed using synthetic approaches. These scenarios are
carefully designed to mimic the typical dynamics of user interactions in terms of variability and randomness.

Dynamic Visualizer Workload: This is a fundamental aspect that our synthetic scenarios must replicate, subject
to the variability introduced by random user interactions. This variability is characterized by two primary dimensions:
the Computational Frequency (CF) and the Computational Intensity (CI). For example, users may alternate
between a broad view, where more agents are rendered but less frequently (low CF, high CI), and a detailed view with
more frequent updates but fewer vehicles (high CF, low CI). Or, users may compute different domain-specific metrics,
toggling between different time windows and computational complexity.

In our experiment, we task the Visualizer with computing four specific metrics derived from a single timestep’s
simulation data. They include Agent count (𝑂 (1)), Average agent speed (𝑂 (𝑛)), Top speed per road (𝑂 (𝑛 log(𝑛)), and Agent
distances (𝑂 (𝑛2)). As identified in [10], these metrics are considered as reflecting the typical computational complexity
in in-situ traffic simulation frameworks. Contrary to actual data rendering, whose computational costs can vary widely
depending on rendering specifics, these metrics provide a consistent benchmark for comparison, justifying their use in
our study for ease of replication. To capture the dynamics of the Visualizer’s workload, we manipulate two aspects of
the computation: the number of agents, which influences the CI, and the temporal frequency, which sets how often the
computation occurs, i.e., influences the CF. This setup allows us to emulate the fluctuations in the Visualizer’s workload
similar to those in real-world scenarios, reflecting changes in CF, CI, or both.

Frequency of interactions: This is particularly crucial for our adaptive approach, which relies on sufficient time and
data points to learn and adapt. While it is theoretically possible for users to make interaction requests at any time, even
every simulation step, we argue that such extremely frequent interactions are rare in large-scale simulations. Meaningful
analysis and knowledge extraction require a more substantial amount of time. Thus, we design the interactions generated
in our synthetic scenarios to last a minimum duration of 2 minutes, i.e., 480 steps, akin to the duration of a traffic light
cycle. We consider this frequency to be both representative and sufficiently challenging for our intended use case.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

Simplified Simulation Workload: Typically, the workload of the simulation has less fluctuation than in the
Visualizer, i.e., it remains stable for a relatively longer time. For the sake of simplicity in our experiment, we run simple
random traffic simulations on a large grid road network, maintain a constant number of 60 000 simulated agents that
are processed using a single thread. The number of agents can clearly scale with the number of threads, however a full
scalability analysis is out of the scope of this work hence will not be further analyzed. As a result, each simulation step
requires a stable amount of wall clock time to process, averaging about 75ms.

6.2 Scenario Setup

We design four scenarios to evaluate the effectiveness of different synchronization approaches. The scenario design is
to dissect and analyze the separate and combined effects of varying computational frequency (CF) and computational
intensity (CI) on the Visualizer side. The Visualizer’s peak workload can reach to 6 s - 8 s per step, which is about 100
times longer compare to the simulation. The computational demands of our experimental setup are comparable to those
reported in previous studies [16], thus confirming the representatives of our experimental setup for similar applications
in the field.

Scenario 1: Constant CF, Variable CI: The CF is fixed, i.e., querying agents every 5 s. The CI varies over five
2-minute phases. As shown in Fig. 5a, 4000 agents are queried initially, increasing to 12 000 agents in the second phase
and remaining at that level through the third phase, then dropping back to 4000 for the fourth phase and continuing at
this level through the fifth phase.

Scenario 2: Constant CI, Variable CF: With 25 000 computational agents fixed, the CF changes every 2 minutes in
the following order: 10 s, 5 s, 2 s, and then back to 5 s and 10 s, as shown in Fig. 5b.

Scenario 3: Variable CF and Variable CI: Over five 2-minute phases (Fig. 5c), both CF and CI vary: Phase 1 starts
with CF = 10 s and CI = 25 000 agents, Phase 2 shifts to CF = 2 s and CI = 5000 agents, Phase 3 changes to CF = 5 s and
CI = 10 000 agents, then cycles back through the settings of phase 2 and 1. This scenario can effectively represent the
workload fluctuations associated with multi-resolution viewing with zoom-in and zoom-out actions.

Scenario 4: OverlappedWorkloadsAs is shown in Fig. 5d, the Visualizer processes multiple metrics simultaneously,
each defined by unique CF and CI values. From 00:00 to 10:00, a load with CF = 10 s and CI = 25 000 agents is applied
consistently. From 02:00 to 04:00, another load with CF = 2 s and CI = 5000 agents is added. For the rest of the time, the
added load changes every 2 minutes, both in terms of CF and CI. This represents a high level of complexity that closely
mirrors the diverse challenges encountered in real-world applications.

6.3 Synchronization Setup

Each scenario in our experimental framework is run with three synchronization approaches, each characterized by
its own set of parameters based on the constraint of the maximal acceptable interaction delay (𝑑max), as introduced in
Section 4.

• Rigid: The rigid synchronization (see Section 3.2) is used as our reference baseline. The synchronization interval
𝑇rigid is determined based on 𝑑max = 2𝑇rigid−𝑇step, as detailed in Section 4. Notably, in alignment with backward
compatibility, this approach is also implemented within our proposed architecture, setting the cycle interval
Δ𝑡 = 𝑇rigid and maintaining a constant single-space buffer capacity.

• Fixed: The second approach in our experimental setup uses the proposed buffer-based architecture. However,
in contrast to the adaptive strategy, here we adopt a simple policy: the capacity of the Bounded Buffer remains

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 15

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Simulation Time [min]

0

2000

4000

6000

8000
Vi

su
al

ize
r W

or
kl

oa
d

[m
s]

(a) Scenario 1: Constant CF, Variable CI

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Simulation Time [min]

0

2000

4000

6000

8000

Vi
su

al
ize

r W
or

kl
oa

d
[m

s]

(b) Scenario 2: Constant CI, Variable CF

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Simulation Time [min]

0

2000

4000

6000

8000

Vi
su

al
ize

r W
or

kl
oa

d
[m

s]

(c) Scenario 3: Variable CF, Variable CI

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Simulation Time [min]

0

2000

4000

6000

8000

Vi
su

al
ize

r W
or

kl
oa

d
[m

s]

(d) Scenario 4: Overlapped Workloads

Fig. 5. Visualization workload for the tested scenarios.

unchanged for the entire duration of the run. The aim is to justify the need for adaptation and prediction. Here,
the framework operates with Δ𝑡 = 𝑇step, and the capacity of the buffer is defined as 𝑑max/𝑇step.

• Adapt: Our comprehensive solution with the proposed adaptive pacing policy (see Section 5.4). We also set
Δ𝑡 to 𝑇step. The maximum buffer capacity is 𝑑max/𝑇step and the desired buffer lower bound, i.e., 𝑛df_low is set to
20% of it. To make predictions, we employ the Triple Exponential Smoothing method, which is known for its

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

1s 5s 10s 15s
dmax

0

50

100

150

200

250
T v

is
_id

le
 [s

ec
]

Rigid
Fixed
Adapt

(a) Scenario 1

1s 5s 10s 15s
dmax

0

50

100

150

200

250

T v
is

_id
le

 [s
ec

]

Rigid
Fixed
Adapt

(b) Scenario 2

1s 5s 10s 15s
dmax

0

50

100

150

200

250

T v
is

_id
le

 [s
ec

]

Rigid
Fixed
Adapt

(c) Scenario 3

1s 5s 10s 15s
dmax

0

50

100

150

200

250
T v

is
_id

le
 [s

ec
]

Rigid
Fixed
Adapt

(d) Scenario 4

Fig. 6. 𝑇vis_idle in various scenarios with different 𝑑max for the synchronization approaches being tested.The line shadow represents
the 95% confidence interval.

effectiveness in identifying trends and seasonality, and is also praised for its simplicity. Crucially, our prediction
model relies solely on collected runtime pacing data. It does not take into account any semantic information
related to the user requests. Factors such as query frequency and agent filtering are assumed to be unknown to
the predictor. This assumption is intentional, as it allows us to stress test our policy to evaluate its robustness in
scenarios where predictive insights are limited.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 17

1s 5s 10s 15s
dmax

0

2

4

6

8

10

12

d
[s

ec
]

Rigid
Fixed
Adapt

(a) Scenario 1

1s 5s 10s 15s
dmax

0

2

4

6

8

10

12

d
[s

ec
]

Rigid
Fixed
Adapt

(b) Scenario 2

1s 5s 10s 15s
dmax

0

2

4

6

8

10

12

d
[s

ec
]

Rigid
Fixed
Adapt

(c) Scenario 3

1s 5s 10s 15s
dmax

0

2

4

6

8

10

12

d
[s

ec
]

Rigid
Fixed
Adapt

(d) Scenario 4

Fig. 7. 𝑑 in various scenarios with different 𝑑max for the synchronization approaches being tested. The error bar represents the 95%
confidence interval.

6.4 Results and Analysis

The effectiveness of each synchronization method is evaluated using two metrics. The first metric (see Fig. 6) is the
Visualizer Idle Time 𝑇vis_idle, as introduced in Section 4. Since the data processing time at the Visualizer is constant
for each scenario, a lower 𝑇vis_idle can also represent a shorter end-to-end time and thus a better runtime efficiency.
The second metric (see Fig .7) is the average delay of interaction, i.e., 𝑑 . For rigid synchronization, this is calculated as
𝑑 =

3𝑇rigid−𝑇step
2 , as detailed in Section 4. For the buffer-based method, it is calculated by averaging the temporal gap, i.e.,

𝑛df · Δ𝑡 , of each time step between the simulation and visualization. With these two metrics, the effectiveness of each
Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

synchronization method in balancing the runtime performance and the synchronicity is evaluated, in response to the
multi-objective optimization problem presented in Section 4. Each scenario is run five times to ensure the reliability of
the results.

Overall, Rigid shows subpar performance in both 𝑑 and 𝑇vis_idle. It records the highest value for both metrics in 13
out of 16 tests, indicating that, compared to the proposed buffer-based approach, the rigid synchronization is prone
to lower interaction efficiency and weaker runtime performance. The key factor behind this performance is that the
interaction delay of Rigid is solely dependent on the synchronization interval 𝑇rigid. Unlike the buffer-based approach,
where information exchange can occur at more granular intervals tailored to real-time workload conditions, Rigid
method allows exchanges only at coarser, predetermined intervals, ignoring the actual workload dynamics. Regarding
runtime performance, the rigidity and the disregard for real-time workload conditions do not ensure optimal workload
balance between the Simulator and the Visualizer during each interval. This explains why an extended 𝑇rigid might
even lead to a decline in performance, as observed in Scenario 1 (Fig. 6a). Here, an increase of 𝑑max from 10 s to 15 s
(meaning a longer 𝑇rigid), does not enhance runtime performance but rather worsens it, as evidenced by the increase in
𝑇vis_idle from 55.56 s to 59.23 s.

Two primary conclusions can be drawn from the results of Fixed, i.e., using the proposed buffer-based approach with
a fixed maximal capacity:

• This approach consistently outperforms others in reducing the𝑇vis_idle under the same scenarios and constraints,
i.e., has the best runtime performance.

• Increasing buffer capacity within the same scenario consistently reduces 𝑇vis_idle until it reaches a certain limit.

Thus, for users whose primary concern is runtime efficiency, the Fixed approach is a straightforward and efficient
solution. However, for use cases like ours, where both runtime efficiency and synchronicity are important, this approach
is not ideal. As mentioned in Section 5.2, overbuffering becomes a problem for the Fixed approach when the preset
buffer capacity exceeds a certain limit. This results in negligible performance improvements while significantly reducing
QoE. For example, in Scenario 1, raising the 𝑑max from 5s to 15s, which is a threefold increase in buffer capacity, only
lowers the idle time by less than 2 s (Fig. 6a), but the 𝑑 increases about 3.5 times, from 2.1 s to 7.3 s (Fig. 7a). Similarly, in
Scenario 2, increasing the 𝑑max from 10 s to 15 s results in roughly the same 𝑇vis_idle (Fig. 6b), but the average delay
increases by more than 50%, i.e., from 7 s to 11.8 s (Fig. 7b). This trend is also noticeable in other scenarios.

Our proposed adaptive policy has proven effective in solving overbuffering, which has been validated in all the
tested scenarios involving varying workloads for CF and CT and their combinations. Note that under the same 𝑑max

constraint, the maximum buffer capacity in Adapt is equivalent to the buffer capacity in the Fixed case throughout the
entire run. This means that the runtime performance achieved by the Fixed approach serves as an upper limit that the
adaptive method can achieve. However, the adaptive method distinguishes itself not only by meeting this benchmark,
i.e., maintaining a close 𝑇vis_idle, but also by doing so with a significantly lower interaction delay.

The largest difference in 𝑇vis_idle between Adapt and Fixed is observed in Scenario 4 with 𝑑max equals to 5 s (Fig.
6d). The adaptive approach exhibits an 𝑇vis_idle of 49.99 s, which is about 15 s more than the Fixed approach. The main
reason for this difference is the high complexity of the Visualizer workload in this case, which affects the accuracy of
the predictions. On average over all cases, Adapt takes approximately 5 s longer than Fixed for the 𝑇vis_idle, which also
reflects the difference in the overall end-to-end time. In Tab. 1 we demonstrated the speedup for all the tested scenarios
with a 𝑑max of 1s and 15s. As illustrated, the execution time loss of the Adapt case compared to Fixed becomes negligible
when the speedup value is considered. This confirms that our suggested policy can uphold the high performance
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 19

Table 1. Speedup of the simulation of examined scenarios. The speedup is determined by the proportion of the simulation’s wall
clock duration to the physical time (i.e., 10 min).

𝑑max Approach Scenario 1 Scenario 2 Scenario 3 Scenario 4
Rigid 1.40 0.66 1.06 0.80

1 s Fixed 1.73 0.73 1.25 0.91
Adapt 1.73 0.72 1.25 0.90
Rigid 2.29 0.82 1.58 1.07

15 s Fixed 2.43 0.84 1.61 1.08
Adapt 2.43 0.83 1.59 1.07

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Simulation Time [min]

0

20

40

60

Bu
ffe

r s
ize

 n
df

Raw data
Avg in every 5s

(a) Fixed

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Simulation Time [min]

0

20

40

60

Bu
ffe

r s
ize

 n
df

ndf_low = 12

Raw data
Avg in every 5s

(b) Adapt

Fig. 8. The fluctuations in 𝑛df during the entire simulation in scenario 1, with the 𝑑max set to 15 seconds. The interaction delay at any
time equals 𝑛df × 250ms.

capability of the buffer-based approach compared to the Rigid approach. In terms of the improved synchronicity, fig. 7
shows that Adapt consistently has the lowest 𝑑 compared to other approaches. For example, with a 𝑑max of 15 s, the
𝑑 using the adaptive method ranges from 39% to 57% of that using the fixed capacity approach. However, it is also
observed that with the increase of 𝑑max from 10 s to 15 s in Adapt, there is minimal improvement in the 𝑇vis_idle but
a more pronounced increase in the 𝑑 , similar to what is seen with the Fixed approach. This phenomenon is largely
attributed to the increase in the desired buffer lower bound (𝑛df_low) as part of our setup. When compared to Fixed, the
increase in 𝑑 within the adaptive method is notably less substantial.

A detailed comparative analysis between Fixed and Adapt is facilitated by Fig. 8, which illustrates the variation of
the number of data frames (𝑛df) within the buffer throughout the entire simulation in Scenario 1, with the 𝑑max set
to 5 s. It can be observed that during the first phase, from 00:00 to 02:00, the buffer in the Fixed approach (Fig. 8a) is
consistently emptied before starting to refill. This is due to the relatively low CI of the visualization during this phase
(Fig. 5a), which allows the Visualizer to consume data faster than the Simulator produces at each 5-second CF. To ensure

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

a minimal𝑇vis_idle, it is crucial for the simulation to operate at its full speed. The Fixed approach achieves this naturally,
as the buffer never reaches its full capacity, thus facilitating the continuous activation of the simulation. Notably, Adapt
(Fig. 8b) also meets this objective, as it keeps the 𝑛df at the same level as the fixed approach, indicating the success of
the proposed adaptive policy in making the right decision.

As the visualization workload increases, it cannot fully process the incoming simulation data in each computation
interval. In Fixed, this leads to an incremental accumulation of unprocessed df (s) in the buffer (from 03:00 to 03:30),
causing the buffer to reach its capacity limit and eventually causing the overbuffering problem. From 03:30 to 07:00, the
buffer is consistently full, which in turn leads to significant temporal gaps between the simulation and visualization.
In contrast, the adaptive approach successfully maintains the buffer size at the minimum necessary level, dictated by
the policy’s 𝑛df_low, which is set at 12, the equivalent of a 3 s time difference. During the period from 03:30 to 07:00,
the buffer size (𝑛df), as shown by the orange line in Fig. 8b, remains relatively stable. This stability suggests that the
simulation is adeptly synchronized to maintain a steady temporal gap with the visualization and matches its pace.
Therefore, the adaptive policy not only guarantees an uninterrupted flow of data to the Visualizer – preventing any idle
time by ensuring that the buffer is never empty – but also holds significantly less data in the buffer compared to the
fixed approach, resulting in superior QoE.

Between 07:00 and 08:00, as the Visualizer’s processing speed accelerates and exceeds that of the simulation, all of
the data stored in the buffer is consumed under the Fixed approach. In the Adapt case, the Pacing Controller accurately
anticipates a potential data shortage. To counteract this, it proactively increases the buffer capacity to the upper limit
and allows the simulation to run at full speed in advance. This forward-thinking strategy leads to a temporary increase
in buffer storage around 07:30 (Fig. 8b), thus ensuring that the best possible runtime performance is maintained, as with
the Fixed approach.

In summary, the results of this detailed analysis of buffer status clearly validate the adaptive approach’s ability to
dynamically adjust the buffer capacity and pacing of the simulation in response to workload dynamics. Compared
to the fixed buffer capacity approach, this adaptability plays a crucial role in preventing overbuffering. And it still
ensures optimal runtime efficiency by proactively increasing the simulation speed in anticipation of potential simulation
slowdowns. These results are consistent with our initial expectations for the designed policy, and demonstrate its
effectiveness in striking a delicate balance between runtime efficiency and synchronicity in an interactive simulation
system.

6.5 Discussion on Prediction Accuracy

In this section, we investigate the impact of prediction accuracy on our synchronization method, focusing on how
inaccurate predictions can affect overall system performance. We have specifically selected Scenario 4 (refer to Section
6.3) for our experiments due to its complex and dynamic Visualizer workload characteristics. As the simulator itself
consistently performs stably over time, making it easier to be predicted compared to the Visualizer, our analysis here
concentrates solely on the prediction accuracy of the Visualizer.

To examine the effects of prediction errors, synthetic noise is added to the workload predictions of the Visualizer,
and we analyzed how these errors affected the decision-making process, ultimately influencing both system runtime
efficiency (Fig. 9a) and user QoE (Fig. 9b). For a baseline comparison, we referred to outcomes from the prior section
using Triple Exponential Smoothing predictions as Adapt_Norm, depicted in Fig. 6d and Fig. 7d. The first test case,
Adapt_Oracle, actually involves no real prediction. Instead, we use recorded historical ground-truth data directly for
the policy’s decision making. Hence, Adapt_Oracle should represent the highest possible accuracy. Following this, we
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 21

1s 5s 10s 15s
dmax

0

20

40

60

80

100

120

140

T v
is

_id
le

 [s
ec

]

Rigid
Fixed
Adapt_Norm
Adapt_Oracle
Adapt_Slow
Adapt_Fast
Adapt_Rand

(a)𝑇vis_idle with different 𝑑max varying prediction accuracy

1s 5s 10s 15s
dmax

0

2

4

6

8

10

12

d
[s

ec
]

Rigid
Fixed
Adapt_Norm
Adapt_Oracle
Adapt_Slow
Adapt_Fast
Adapt_Rand

(b) 𝑑 with different 𝑑max varying prediction accuracy

1 2 3 4 5
d [sec]

20

40

60

80

100

120

140

T v
is

_id
le

 [s
ec

]

Predict
Adapt_Rand
Adapt_Norm
Adapt_Oracle
dmax

1s
5s
10s
15s

(c) Pareto frontminimizing both𝑇vis_idle and𝑑 across varying
prediction accuracy

Fig. 9. Experiment outcomes on the effects of prediction accuracy

introduce three different cases with varying kinds of prediction noise. They modified the original prediction outcomes
𝑝 , i.e., Visualizer execution time for a step, to 𝑝′ using different functions:

• Adapt_Slow: In this setup, each predicted Visualizer’s execution time is intentionally increased by a random
percentage, i.e., 𝑝′ = 𝑝 ∗ (1 +𝑈 (0, 1)), where𝑈 is a continuous uniform distribution. This will effectively bias
the prediction data, simulating a slower-than-actual performance of the Visualizer.

• Adapt_Fast: Conversely, this configuration reduces the predicted time cost of the Visualizer by a random
percentage, i.e., 𝑝′ = 𝑝 ∗ (1 +𝑈 (−1, 0)), thereby tending to forecast a faster Visualizer than it actually is.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

• Adapt_Rand: In this case, the predicted times are modified randomly i.e., 𝑝′ = 𝑝 ∗ (1 +𝑈 (−1, 1)). This adds
noise to the prediction without creating a bias to the mean of the original predicted dataset.

Initially, with a low constraint (i.e., 𝑑max = 1 s), the prediction inaccuracies do not significantly alter the policy’s
performance concerning the two metrics, i.e., 𝑇vis_idle (see Fig. 9a) and 𝑑 (see Fig. 9b). This is because the buffer’s
maximum capacity is small (i.e., 4), limiting the policy’s ability to demonstrate its effectiveness. However, as the 𝑑max

increases beyond 5 s (buffer with a maximum capacity exceeding 20), the impact of prediction errors becomes more
evident.

As anticipated, we observe the following from Adapt_Slow and Adapt_Fast: Adapt_Slow tends to underestimate
the execution performance of the Visualizer, predicting a slower speed than the actual. Consequently, the simulation
is paced more slowly to align with the Visualizer. This resulted in the longest Visualizer Idle Time, i.e., the longest
end-to-end time compared to other prediction cases. As shown in Fig. 9a, represented by the purple dashed line, when
the 𝑑max exceeds 10 s, the 𝑇vis_idle of Adapt_Slow exceeds even that of Rigid. However, it has the advantage of the
shortest interaction delays (refer to the purple bar in Fig. 9b), signifying the best QoE. Conversely, Adapt_Fast tends to
overestimate the Visualizer’s capabilities, prompting simulations to run too quickly in an attempt to catch up with
the anticipated performance of the Visualizer. This results in the shortest 𝑇vis_idle among all adaptive scenarios, nearly
matching the upper limit of the Fixed case (see the overlapping brown and yellow dashed lines in Fig. 9a). However, not
surprisingly, this approach incurs the highest interaction delay among all adaptive scenarios (brown bar in Fig. 9b),
though it remains lower than those observed in Fixed and Rigid.

Comparing Adapt_Oracle, Adapt_Norm, and Adapt_Rand, it is clear that the closeness of predictions to the ground
truth—ranging from most accurate to least—is directly influences the quality of outcomes. Fig. 9c shows that more
accurate predictions result in improved results, as evidenced by a lower Pareto front. This suggests that under the
identical constraints, more precise predictions is able to effectively minimize both metrics, 𝑇vis_idle and 𝑑 , at the same
time.

To sum up, this study underscores the consequences of slower or faster predictions and the influence of random
noise on our policy’s decision-making processes. The findings validate our design principles, demonstrating that the
framework operates as intended and suggests that improved prediction accuracy could boost the performance of our
proposed policy.

7 CONCLUSION AND FUTUREWORK

In this paper, we contribute to the advancement of Visual Interactive Simulation (VIS) synchronization in three respects.
First, we define the enhancement of simulation runtime efficiency and synchronicity as a multi-objective optimization

challenge (see Section 4). This perspective provides a structured approach to addressing the complexities inherent
in VIS synchronization. Second, we present a novel framework that utilizes a Controller as a drop-in replacement
for a straightforward Visualizer-Simulator connection, making it applicable to a wide range of applications. Third,
we introduce a heuristic algorithm that utilizes predictive workload analysis to dynamically control the pace of the
simulation to match the real-time workload of the visualization. Our experimental evaluation demonstrates that this
method substantially enhances runtime efficiency and Quality of Experience (QoE) compared to traditional fixed-interval
synchronization.

As future research, we consider to integrate our synchronization strategy with resource allocation methods. By
dynamically allocating computational resources to simulation and visualization tasks to regulate their processing speed,
Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation 23

we can potentially improve performance beyond what our current buffer-based policy allows. This integration could
provide a comprehensive solution for balancing the runtime efficiency and synchronicity in VIS systems.

REFERENCES
[1] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland, Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst:

Enabling In Situ Data Analysis and Visualization. In 1st Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization.
ACM, 25–29. https://doi.org/10.1145/2828612.2828624

[2] Andrew C Bauer, Hasan Abbasi, James Ahrens, Hank Childs, Berk Geveci, Scott Klasky, Kenneth Moreland, Patrick O’Leary, Venkatram Vishwanath,
Brad Whitlock, et al. 2016. In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms. Computer Graphics
Forum 35, 3 (June 2016), 577–597. https://doi.org/10.1111/cgf.12930

[3] John Biddiscombe, Jerome Soumagne, Guillaume Oger, David Guibert, and Jean-Guillaume Piccinali. 2011. Parallel Computational Steering and
Analysis for HPC Applications using a ParaView Interface and the HDF5 DSM Virtual File Driver. In Eurographics Symposium on Parallel Graphics
and Visualization. Eurographics Association, 91–100. https://doi.org/10.2312/EGPGV/EGPGV11/091-100

[4] Aradhya Biswas and Richard Fujimoto. 2018. Zero Energy Synchronization of Distributed Simulations. In Proceedings of the 2018 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. ACM, 85–96. https://doi.org/10.1145/3200921.3200938

[5] Stefan Boschert and Roland Rosen. 2016. Digital Twin—The Simulation Aspect. Mechatronic futures: Challenges and solutions for mechatronic systems
and their designers (2016), 59–74. https://doi.org/10.1007/978-3-319-32156-1_5

[6] Marc Buffat, Anne Cadiou, Lionel Le Penven, and Christophe Pera. 2016. In situ analysis and visualization of massively parallel computations. The
International Journal of High Performance Computing Applications 31, 1 (July 2016), 83–90. https://doi.org/10.1177/1094342015597081

[7] Gerasimos Chourdakis, Kyle Davis, Benjamin Rodenberg, Miriam Schulte, Frédéric Simonis, Benjamin Uekermann, Georg Abrams, Hans-Joachim
Bungartz, Lucia Cheung Yau, Ishaan Desai, Konrad Eder, Richard Hertrich, Florian Lindner, Alexander Rusch, Dmytro Sashko, David Schneider,
Amin Totounferoush, Dominik Volland, Peter Vollmer, and Oguz Ziya Koseomur. 2022. preCICE v2: A sustainable and user-friendly coupling library.
Open Research Europe 2 (Sept. 2022). https://doi.org/10.12688/openreseurope.14445.2

[8] Frederica Darema. 2011. DDDAS Computational Model and Environments. Journal of Algorithms & Computational Technology 5, 4 (Dec. 2011),
545–560. https://doi.org/10.1260/1748-3018.5.4.545

[9] Matthieu Dorier, Robert Sisneros, Leonardo Bautista Gomez, Tom Peterka, Leigh Orf, Lokman Rahmani, Gabriel Antoniu, and Luc Bougé. 2016.
Adaptive Performance-Constrained In Situ Visualization of Atmospheric Simulations. In 2016 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 269–278. https://doi.org/10.1109/CLUSTER.2016.25

[10] Xiaorui Du, Zhuoxiao Meng, Anibal Siguenza-Torres, Alois Knoll, Adriano Pimpini, Andrea Piccione, Stefano Bortoli, and Alessandro Pellegrini.
2023. Autonomic Orchestration of in-Situ and in-Transit Data Analytics For Simulation Studies. In 2023 Winter Simulation Conference (WSC). IEEE,
781–792. https://doi.org/10.1109/WSC60868.2023.10408191

[11] Richard Fujimoto, Joseph Barjis, Erik Blasch, Wentong Cai, Dong Jin, Seunghan Lee, and Young-Jun Son. 2018. Dynamic data driven application
systems: research challenges and opportunities. In 2018 Winter Simulation Conference (WSC). IEEE, 664–678. https://doi.org/10.1109/WSC.2018.
8632379

[12] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2018. Co-Simulation: A Survey. ACM Computing Surveys
(CSUR) 51, 3 (May 2018), 1–33. https://doi.org/10.1145/3179993

[13] Maria Hybinette and Richard Fujimoto. 1997. Cloning: a novel method for interactive parallel simulation. In 29th Conference on Winter Simulation
(WSC) (Atlanta, Georgia, USA). ACM, 444–451. https://doi.org/10.1145/268437.268523

[14] Christopher Johnson, Steven G Parker, Charles Hansen, Gordon L Kindlmann, and Yarden Livnat. 1999. Interactive simulation and visualization.
Computer 32, 12 (1999), 59–65. https://doi.org/10.1109/2.809252

[15] Yi Ju, Adalberto Perez, Stefano Markidis, Philipp Schlatter, and Erwin Laure. 2022. Understanding the Impact of Synchronous, Asynchronous, and
Hybrid In-Situ Techniques in Computational Fluid Dynamics Applications. In 2022 IEEE 18th International Conference on e-Science (e-Science). IEEE,
295–305. https://doi.org/10.1109/eScience55777.2022.00043

[16] Takuma Kawamura, Yuta Hasegawa, and Yasuhiro Idomura. 2023. Interactive steering on in situ particle-based volume rendering framework.
Journal of Visualization 27, 1 (Sept. 2023), 89–107. https://doi.org/10.1007/s12650-023-00945-z

[17] James Kress, Scott Klasky, Norbert Podhorszki, Jong Choi, Hank Childs, and David Pugmire. 2015. Loosely Coupled In Situ Visualization: A
Perspective on Why It’s Here to Stay. In 1st Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. ACM.
https://doi.org/10.1145/2828612.2828623

[18] Marcel Krüger, Simon Oehrl, Ali C. Demiralp, Sebastian Spreizer, Jens Bruchertseifer, Torsten W. Kuhlen, Tim Gerrits, and Benjamin Weyers.
2022. Insite: A Pipeline Enabling In-Transit Visualization and Analysis for Neuronal Network Simulations. In ISC High Performance 2022. Springer,
295–305. https://doi.org/10.1007/978-3-031-23220-6_20

[19] Henry Lehmann and Bernhard Jung. 2014. In-situ multi-resolution and temporal data compression for visual exploration of large-scale scientific
simulations. In 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV). IEEE, 51–58. https://doi.org/10.1109/LDAV.2014.7013204

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Z. Meng, M. Gao, M. Grossi, A. Siguenza-Torres, S. Bortoli, C. Sommer, and A. Knoll

[20] Feng Li and Fengguang Song. 2023. INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows. In European Conference on Parallel
Processing. Springer, 199–213. https://doi.org/10.1007/978-3-031-39698-4_14

[21] Jianping Kelvin Li, Misbah Mubarak, Robert B. Ross, Christopher D. Carothers, and Kwan-Liu Ma. 2017. Visual Analytics Techniques for Exploring
the Design Space of Large-Scale High-Radix Networks. In 2017 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 193–203.
https://doi.org/10.1109/CLUSTER.2017.26

[22] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society A 379, 2194
(Feb. 2021), 20200209. https://doi.org/10.1098/rsta.2020.0209

[23] Zhuoxiao Meng, Anibal Siguenza-Torres, Mingyue Gao, Margherita Grossi, Alexander Wieder, Xiaorui Du, Stefano Bortoli, Christoph Sommer, and
Alois Knoll. 2023. Towards Discrete-Event, Aggregating, and Relational Control Interfaces for Traffic Simulation. In ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (SIGSIM-PADS ’23). ACM, 12–22. https://doi.org/10.1145/3573900.3591116

[24] Anirudh Modi, Lyle N. Long, and Paul E. Plassmann. 2002. Real-Time Visualization of Wake-Vortex Simulations Using Computational Steering
and Beowulf Clusters. In 5th International Conference on High Performance Computing for Computational Science (VECPAR 2002) (Porto, Portugal).
Springer, 464–478. https://doi.org/10.1007/3-540-36569-9_31

[25] S. Narayanan and Phani Kidambi. 2011. Interactive Simulations: History, Features, and Trends. Springer London, London. 1–13 pages. https:
//doi.org/10.1007/978-0-85729-883-6_1

[26] Robert M. O’Keefe. 1987. What is visual interactive simulation? (and is there a methodology for doing it right?). In 19th conference on Winter
simulation (WSC ’87) (Atlanta, Georgia, USA). ACM, 461–464. https://doi.org/10.1145/318371.318635

[27] Steven G. Parker and Christopher R. Johnson. 1995. SCIRun: a scientific programming environment for computational steering. In 1995 ACM/IEEE
Conference on Supercomputing (San Diego, California, USA). ACM. https://doi.org/10.1145/224170.224354

[28] Kalyan Perumalla, Peter Barnes, Maximilian Bremer, Kevin Brown, Cy Chan, Stephan Eidenbenz, K. Scott Hemmert, Adolfy Hoisie, Benjamin
Newton, James Nutaro, Tomas Oppelstrup, Robert Ross, Markus Schordan, and Nathan Urban. 2022. Computer Science Research Needs for Parallel
Discrete Event Simulation (PDES). Technical Report. Office of Scientific and Technical Information (OSTI). https://doi.org/10.2172/1855247

[29] Zhe Wang, Matthieu Dorier, Pradeep Subedi, Philip E. Davis, and Manish Parashar. 2023. Adaptive elasticity policies for staging-based in situ
visualization. Future Generation Computer Systems 142 (May 2023), 75–89. https://doi.org/10.1016/j.future.2022.12.010

[30] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. 2011. Parallel In Situ Coupling of Simulation with a Fully Featured Visualization System. In
Eurographics Symposium on Parallel Graphics and Visualization, Torsten Kuhlen, Renato Pajarola, and Kun Zhou (Eds.). The Eurographics Association.
https://doi.org/10.2312/EGPGV/EGPGV11/101-109

[31] Haowen Xu, Chieh (Ross) Wang, Anne Berres, Tim LaClair, and Jibonananda Sanyal. 2021. Interactive Web Application for Traffic Simulation
Data Management and Visualization. Transportation Research Record: Journal of the Transportation Research Board 2676, 1 (Aug. 2021), 274–292.
https://doi.org/10.1177/03611981211035760

[32] Hongfeng Yu, Tiankai Tu, Jacobo Bielak, Omar Ghattas, Julio López, Kwan-Liu Ma, David R. O’Hallaron, Leonardo Ramirez-Guzman, Nathan
Stone, Ricardo Taborda-Rios, and John Urbanic. 2006. Remote Runtime Steering of Integrated Terascale Simulation and Visualization. (2006).
https://doi.org/10.1184/R1/6608987.v1

[33] Daniel Zehe, Alois Knoll, Wentong Cai, and Heiko Aydt. 2015. SEMSim Cloud Service: Large-scale urban systems simulation in the cloud. Simulation
Modelling Practice and Theory 58 (Nov. 2015), 157–171. https://doi.org/10.1016/j.simpat.2015.05.005

[34] Daniel Zehe, Suraj Nair, Alois Knoll, and David Eckhoff. 2017. Towards CityMoS: A Coupled City-Scale Mobility Simulation Framework. (April
2017).

[35] Daniel Zehe, Vaisagh Viswanathan, Wentong Cai, and Alois Knoll. 2016. Online Data Extraction for Large-Scale Agent-Based Simulations. In 2016
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’16). ACM, 69–78. https://doi.org/10.1145/2901378.2901384

[36] Hongbo Zou, Fang Zheng, Matthew Wolf, Greg Eisenhauer, Karsten Schwan, Hasan Abbasi, Qing Liu, Norbert Podhorszki, and Scott Klasky. 2012.
Quality-Aware Data Management for Large Scale Scientific Applications. In 2012 SC Companion: High Performance Computing, Networking Storage
and Analysis. IEEE, 816–820. https://doi.org/10.1109/SC.Companion.2012.114

Manuscript submitted to ACM

