
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Simopticon: Automated optimization of vehicular platooning controllers
Per Natzschka , Burkhard Hensel ∗, Christoph Sommer
TU Dresden, Faculty of Computer Science, Germany

A R T I C L E I N F O

Dataset link: cms-labs.org/research/software/si
mopticon/, zenodo.org/records/13828790

MSC:
37M05
70Q05
68-04

Keywords:
Simulation
Optimization

A B S T R A C T

Platooning control – the automatic distance control in a chain of vehicles – has seen more than 2000
publications in the past 30 years, along with a corresponding number of different algorithms. However,
comparisons between such controllers have rarely been done. Moreover, a fair comparison requires that all
controller parameters are chosen to be optimal, often manually, which is a labor intensive and hard to replicate
process. In this article we demonstrate the benefits of a methodology for parameter selection that encompasses:
an evaluator employing a common metric, a simulator component, and an optimizer, all integrated into an
optimization framework – along with an open-source reference implementation. We also discuss the trade-offs
of different optimization algorithms, both from the literature and custom-built, for parameter optimization of
platooning controllers.

1. Introduction

There are many reasons to let vehicles form platoons, i.e., to form
a chain of vehicles driving with automated distance control. Besides
improving driver comfort, automatic control has a shorter reaction time
and allows thus shorter inter-vehicle distances. That increases road
capacity and reduces air drag, resulting in less energy consumption and
less air pollution [1–4]. Since the 1990s, such distance control is often
informed by wireless messages exchanged between the vehicles [5],
because this allows using more knowledge and therefore shortening fur-
ther the distance between the vehicles and improving safety. Platooning
with wireless message exchange is usually called Cooperative Adaptive
Cruise Control (CACC).

Over the years, a wide variety of control algorithms has been used,
from simple equations based on sliding-mode control [6,7], to consen-
sus controllers [8,9], to optimal control [10] and complex model-based
predictive controllers [11,12]. Many modern controllers can even take
inhomogeneous platoons (different vehicle types in the same platoon),
transmission delays, or the loss of wireless packets into account. Yet,
most publications compare the proposed algorithm only with one or
two other controller types without discussing if these controllers have
been optimized appropriately. Control algorithms contain parameters
with which their behavior can be adjusted to a given platoon or control
objective. These parameters have not only an influence on control
performance, but also on internal stability and string stability.

Especially from a practical point of view, the question is open,
which of the hundreds of control algorithms should be preferred,
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because detailed and fair comparisons of more than a few controllers
are rare.

There is thus a very real necessity to move away from manual,
case-by-case optimization of select controllers, which are becoming in-
creasingly complex – and to instead move towards the fully automatic,
reproducible optimization of platooning controllers based on a shared
metric.

The aim of this article is to contribute to the answer of this question.
In brief, the key contributions of this article are:

• We demonstrate the benefits of a methodology for automatic
parameter optimization, illustrated in Fig. 1, that encompasses
all of: an evaluator employing a common metric, a simulator
component, and an optimizer.

• For the optimizer, we discuss the trade-offs of different opti-
mization algorithms for parameter optimization of platooning
controllers, both straightforward ones from the Monte Carlo and
Random Neighbors families and a custom variant of the Direct
family of algorithms we call Simopticon-Direct.

• We discuss our open-source reference implementation of the pre-
sented methodology in an extensible architecture with a straight-
forward metric, the mean cumulative mean squared error
(𝜀MCMSE). Notably, instead of requiring yet another custom sim-
ulator, its simulator component employs the proven and estab-
lished Plexe simulation framework, which in turn is based on
OMNeT++, SUMO, and Veins.
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Fig. 1. Architecture of the optimization framework and open-source reference imple-
mentation discussed in this article.

• In case studies, we demonstrate that a) many common controllers
have a lot of potential for optimization compared to their default
parameterization, b) that the type of optimization strategy mat-
ters, and c) that the reference distance has an enormous influence
on the control quality of some controllers.

It should be mentioned that parameter optimization is not directly
necessary if controllers are used that learn their parameters during run-
time (i.e., adaptive controllers [13] or methods based on reinforcement
learning [14]). Comparable to this approach is also self-organization,
where platoons homogenize their dynamic behavior [15]. Nevertheless,
the by far largest part of published platoon controllers assumes con-
stant dynamic behavior, and this article focuses on the optimization
of such controllers. However, also self-learning approaches, like these
mentioned before, have parameters (e.g., a learning rate) that might be
optimized using Simopticon.

This article is structured as follows. We first discuss related work on
platooning simulation, controller comparison, and optimization frame-
works (Section 2). We then present the overall methodology and give an
overview of the structure of the reference implementation used in the
following studies (Section 3). We follow this with a detailed discussion
of three optimization algorithms, two standard and one specifically
adapted to platoon controller optimization (Section 4). We then discuss
the results of a verification study of these algorithms, their performance
for standard problems and the suitability of the chosen algorithm for
platoon controller optimization (Section 5). We then present the results
of a case study in which we demonstrate the impact of parameter
optimization on the performance of a platoon controller, demonstrating
how optimization drastically changes the perceived performance of
five standard platoon controllers (Section 6). We finish with a brief
summary and outlook on future work (Section 7).

A glossary together with the abbreviations used in this article is
given in Table 1.

2. Related work

2.1. Simulation of platoons

Performance evaluation of platooning controllers is usually done by
simulation. Several tools are available that have been used for simu-
lating platoons. A broad overview is given by Segata et al. [16]. The

most well known simulation software in the control domain is MATLAB.
It is also often used for platooning [17–19]. DYNACAR has been used
by Hidalgo et al. [20], TORCS by Ali et al. [18]. Several platooning
models are based on CARLA, e.g., OpenCDA [15,21]. More alternatives
are VISSIM [22], CarSim [23], HESTIA [24], and iTETRIS [25].

This variety of simulation tools shows that from the viewpoint of
just simulating a platoon, it typically does not matter which simulation
software is used, because most platoon control algorithms and vehicle
models are simple enough to implement in any simulation software.
Differences exist in features of the simulation tools that are not in each
case relevant. Matlab is outstanding for mathematical purposes as it
contains an immense set of mathematical features that help implement
complicated methods and especially numerical stability analyses. On
the other hand, Plexe, for instance, provides more detailed network
models and the large set of features of the traffic simulation software
SUMO. However, these features are not needed for the simple scenario
of a straight road and simple periodic messages that are typical for
platoon controller studies. Carla, as a third example, is mainly known
for its highly realistic visualization, which is nice for presentations,
but not really needed for the analysis of controllers. Simopticon has
been designed to be as loosely coupled as possible to any simulation
software, in order to be able to reuse it also for other simulators. The
decision to start with Plexe as the first supported simulation software
is mainly based on the experience of the authors in former works.

Plexe [16] is a platooning extension of the Car2x simulation frame-
work Veins, that combines the traffic simulator SUMO with the net-
work simulator OMNeT++. Plexe is open-source software designed
for simulating platooning scenarios and testing platoon controllers.
Plexe is based on the traffic simulator SUMO, the network simulator
OMNeT++, and the Car2x simulator Veins. Most simulation details
are implemented in C++ like in OMNeT++. Due to Veins, especially
the network (typically using IEEE 802.11p as wireless communication
technology) is modeled in detail with a lot of parameters. The main
advantages of Plexe compared to the most often used software MATLAB
is the availability of detailed network models, engine models, scenar-
ios, and controller implementations in a unified framework, and the
open-source license.

2.2. Comparison of platoon controllers

To the best of our knowledge, besides some basic case studies,
no comparison of platoon controllers has been done. A comparison
of basic platoon controllers has been made by Liu et al. [26] using
the simulation framework Plexe. The focus was on comparing five
controllers in a sinusoidal scenario with Gaussian noise. The parameters
have been used as they are by default in Plexe. Hasan et al. [27]
gave a comparison of two controllers regarding emergency brake using
Plexe. Model Predictive Control (MPC) and CACC algorithms have
been compared by Hidalgo et al. [20]. Some works [10,17,18,28,29]
provide a comparison of a new controller with one or several others.
Where Plexe has been used to simulate platoons, the default controller
parameters have not been changed (as far as this information provided
in the publications) [26,27,30,31].

2.3. Optimization frameworks

The optimization of simulation parameters has been addressed al-
ready many times and many such optimization frameworks have been
developed for domains other than platooning [32–43]. The operating
principle is usually equal: A parameter set is selected; a simulation
is executed with that parameter set; metrics are computed from the
simulation outputs; an optimizer decides based on the metrics which
parameter set is the best current candidate; the parameters are changed
according to an optimization strategy, and the loop starts again until a
stopping criterion is fulfilled. To the best of our knowledge it has not
yet been explored how this established strategy can be mapped to the
domain of platooning controller optimization.

Ad Hoc Networks 170 (2025) 103781 

2 



P. Natzschka et al.

Table 1
Glossary and list of abbreviations used in this article.
CC Cruise Control (vehicle drives at a constant speed, independent of BR Branin (optimization benchmark function; see also the following functions)

its predecessor) C6 Six-Hump Camelback
ACC Adaptive Cruise Control (vehicle attempts to follow its predecessor with GP Goldstein-Price

a constant distance and/or time headway, based purely on sensors) H3 Hartman 3
CACC Cooperative Adaptive Cruise Control (like ACC, but based on both H6 Hartman 6

sensors and wirelessly received information) S10 Shekel 10
MPC Model Predictive Control (control strategy that uses a model of the S5 Shekel 5

system to predict future states and optimize a cost function) S7 Shekel 7
SHU Shubert

3. Methodology and reference implementation structure

Our methodology for parameter selection encompasses three dis-
tinct parts: An evaluator employing a common metric, a simulator
component, and an optimizer. These three parts are integrated into an
optimization framework. We also discuss a reference implementation of
this methodology, called Simopticon.1 It is an open-source framework
providing functionality and interfaces for the iterative search of optimal
simulation parameters.

Each iteration of Simopticon consists of three steps which are
executed by three major components of Simopticon: Optimizer, Simu-
lationRunner, and Evaluation; these correspond to the three parts of the
methodology (Optimizer, Simulator, and Evaluator) illustrated in Fig. 1.

3.1. Evaluation

In the last step, the Evaluation must judge the performance of
each simulated allocation by calculating a scalar performance value
based on the acquired simulation data. This value is interpreted as
a score of the evaluated parameter allocation and can be used by
the Optimizer to determine the next set of allocations. In Simopticon,
a lower performance score implies a better simulation performance.
Therefore, the Optimizer searches the minimum of a blackbox function
which can only be assessed by feeding it parameter allocations and
obtaining the respective performance score. The optimization iteration
is canceled when the optimization strategy in Optimizer finishes or the
user interrupts the process. Simopticon allows for the use of arbitrary
evaluation metrics.

The scoring function used in the following experiments is con-
structed as follows: It is based on the assumption that the best allocation
ensures that the inter-vehicle gap is equal to the target gap at any given
point in time for each vehicle. Thus, the performance of an allocation
can be quantified by measuring the deviation of a vehicle with index 𝑖
from its target gap 𝑑r ef ,𝑖(𝑡), which itself is a function of the speed 𝑣𝑖(𝑡).
Plexe measures the inter-vehicle gap for each simulated vehicle at a
fixed rate. Let 𝑇 be the set of points in time when the gap is measured
and 𝑑𝑖 ∶ 𝑇 → R denote the gap measurements between the 𝑖th and
(𝑖 − 1)th vehicle. The spacing error of each vehicle is calculated as the
mean squared error. For a given scenario 𝑠 and a given random seed
𝑟, the error 𝜀CMSE(𝑠, 𝑟) in a simulation of 𝑛 vehicles is accumulated by
adding the respective mean squared errors:

𝜀CMSE(𝑠, 𝑟) =
𝑛∑
𝑖=2

1
|𝑇 |

∑
𝑡∈𝑇

(
𝑑𝑖(𝑡) − 𝑑r ef ,𝑖(𝑡)

)2
(1)

Note that the vehicles are numbered from 1 to 𝑛, i.e., 𝑖 = 1 is the platoon
leader and therefore not relevant to the error calculation in Eq. (1).
As was mentioned earlier, each parameter allocation may be simulated
multiple times using different scenarios or random seeds. For each
of those simulation runs the error 𝜀CMSE(𝑠, 𝑟) is calculated as shown
in Eq. (1), resulting in |𝑆| ⋅ |𝑅| error values, where 𝑆 and 𝑅 denote

1 For download links, see the data availability statement at the end of the
article.

the simulated scenarios and random seed variations, respectively. To
allow for a simple form of multi-objective optimization [44], i.e., op-
timizing the parameters to suit all simulated scenarios, the evaluation
returns the arithmetic mean of the calculated error values as the mean
cumulative mean squared error,

𝜀MCMSE = 1
|𝑆| ⋅ |𝑅|

∑
𝑠∈𝑆

∑
𝑟∈𝑅

𝜀CMSE(𝑠, 𝑟) (2)

In controller parameter optimization, a multitude of different sce-
narios should be simulated to avoid overfitting of parameters to a small
subset of the possible scenarios.

The 𝜀MCMSE metric allows for comparison of platoon stability based
on gap measurements only. The main disadvantage of this simple
method is that it does not account for collisions between vehicles.
When a collision occurs, the simulation is stopped instantly and no
further measurements are recorded. In this case, though, 𝜀MCMSE is
comparatively high, since at least one vehicle 𝑖 has a deviation of
−𝑑r ef ,𝑖(𝑡) from its target distance at the time of crash 𝑡. Nevertheless,
there can be worse values of 𝜀MCMSE even if no collision occurs, e.g., if
a gap measurement of a vehicle is 2𝑑r ef ,𝑖(𝑡) at some point 𝑡 of the
simulation. Thus, simulations with collisions do not necessarily lead to
the highest (i.e., worst) possible evaluation score. This problem, how-
ever, did not affect the studies of this article since all minima found in
simulation studies were far below the values calculated for simulations
with colliding vehicles. The exploration of more sophisticated metrics
that incorporate collisions and other requirements like string stability
is left as future work. Such metrics could be implemented as a linear
combination of different evaluation metrics.

3.2. SimulationRunner

The SimulationRunner automates the simulation of the selected allo-
cations. In our case it automates the process of conducting platooning
simulations with given control parameters using Plexe. Plexe currently
contains five platoon controllers that are described in Section 6.1, but
own controllers can be added. Each simulation project contains a text
file containing adjustable parameters. These are not only controller pa-
rameters, but also parameters influencing the scenario, e.g., number of
vehicles in the platoon, probability for packet losses, vehicle properties.
In more detail, SimulationRunner is designed to create new Plexe sim-
ulation parameter files containing the requested parameter allocations
based on a prototype file. Execution of the respective simulations is
being parallelized to increase efficiency. This is especially important as
Plexe allows the simulation of different platooning scenarios with the
same parameter allocation. This – and repeating the same (stochastic)
simulation with different random seeds a given number of times – lead
to a potentially high number of simulation runs per sampled parameter
allocation.

3.3. Optimizer

First, the Optimizer selects a set of parameter allocations that are
simulated in the second step. The selection is based on previously
sampled allocations and a blackbox optimization strategy.
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Fig. 2. Partition of a 2-dimensional hypercube.

A central controller uses the Optimizer to conduct the iterative
optimization process using the respective components. A loose coupling
of components makes the framework extendable with new implementa-
tions of the components, which can be used interchangeably. Similarly,
each implementation of components has their own configuration file,
since the available settings may differ between implementations. For
example, the SimulationRunner implementation for Plexe may simulate
different controllers that are selected in the respective configuration,
but that option might not be relevant for other implementations.

We discuss the optimization strategies available to the Optimizer
class in Section 4.

4. Optimization strategies

In the following we present three optimization strategies that we
investigated for the optimization of platooning controllers.

Besides two simple stochastic optimizers, presented in Sections 4.2
and 4.3, respectively, the framework contains a deterministic, but com-
plicated optimizer that is described in detail in Section 4.1. As in the
practical experiments on platooning the simple stochastic algorithms
showed a better convergence (see Section 6.4), readers interested only
in the application might skip the long Section 4.1.

4.1. The Simopticon-Direct optimization algorithm

The Direct (DIviding RECTangles) algorithm is a well-known method
of solving derivative-free global optimization problems that has seen a
multitude of applications and adaptions [45,46] since its introduction
in 1993 by Jones et al. [47]. Direct algorithms are deterministic and
allow for Lipschitzian optimization without the need to specify a Lips-
chitz constant, i.e., no initial knowledge about the optimized problem is
needed. Adaptions of the Direct algorithm often outperform other state-
of-the-art derivative-free global optimization methods [48]. The main
drawback of Direct algorithms is the ‘‘curse of dimensionality’’ [45],
i.e., their bad performance in higher dimensionality. This, however, is
not problematic when optimizing platoon controllers since they usually

only have a small number of parameters. Therefore, we investigate
the Direct algorithm family as a candidate for the optimization of
platooning controllers.

However, one of the major strengths of Direct algorithms – their
balancing of global and local search – can become a weakness when
the basin of the global optimum has been found and local refinement
should prevail [45]. This is especially problematic in the context of sim-
ulation optimization where every evaluation is computationally costly,
i.e., unnecessary global exploration may severely slow down the opti-
mization process. We therefore chose to adapt the Direct algorithm [47]
to the specific use case of optimizing platooning controllers. To accom-
plish this, we combine the Direct variation by Liu et al. [49,50] (which
adds local refinement phases) with the partitioning scheme introduced
by Sergeyev and Kvasov [51] (which further improves performance
in low dimensionality). We call this adaptation Simopticon-Direct. It
is adapted – and, as we will show, particularly effective – for low-
dimensional problems (𝑛 < 4), which is the case for the platooning
controllers we are optimizing.

4.1.1. Search space partition
The search space for a controller with 𝑛 parameters is, without

loss of generality, normalized to the 𝑛-dimensional hypercube. The
Direct algorithm partitions said search space into increasingly smaller
hyperrectangles. In each iteration step, a subset of the current partition
is selected (see Section 4.1.2) for further exploration. The rectangles
of this subset are then split into smaller rectangles which in turn are
sampled again. This way the algorithm approaches the global minimum
by dividing rectangles where good values have been found and thereby
sampling around the optimum more densely.

To be more precise, a selected rectangle is always split into thirds.
For 𝑛 = 2 dimensions, this is shown in Fig. 2 where the selected rectan-
gles are highlighted in yellow. Rectangles are always split along one of
their longest sides which ensures that each dimension is explored to the
same extent throughout the optimization. If there are multiple longest
sides (e.g., Fig. 2(a)), the split dimension may be chosen arbitrarily.
Since the partition strategy of Sergeyev and Kvasov [51] is used, the
split dimensions are selected in ascending order here.

While most Direct variations sample the centerpoint of newly added
rectangles [49,50,52–58], Simopticon-Direct samples opposite vertices
as proposed by Sergeyev and Kvasov [51]. In low dimensionality, this
allows for a more precise selection of rectangles that are being split,
since every rectangle can be judged based on two sampled values,
instead of one. Counter-intuitively, sampling opposite vertices reduces
the number of sampling points required to partition the search space
into a given number of rectangles, instead of doubling it. This is, for
example, visible in Fig. 2, where the sampling points are visualized by
black dots. While the ratio of sampling points to rectangles is indeed
2 ∶ 1 in Fig. 2(a), it rapidly changes to 1 ∶ 1 in Fig. 2(d). This is due to
sampling points being used as vertices of multiple rectangles.

4.1.2. Search strategy
One key advantage of the Direct algorithm is its deterministic, direct

search strategy, i.e., its selection of rectangles that are sampled and
divided further in each iteration step. The strategy is derived from
Lipschitzian optimization, i.e., it judges the potential optimality of all
rectangles in the partition based on an estimate of their lower bound.
Let 𝑓 ∶ [0, 1]𝑛 → R be the optimized function and assume that we know
a Lipschitz constant 𝐾 for 𝑓 , i.e., we know a 𝐾 ∈ (0,∞) such that for
any 𝑥⃗, 𝑥′ ∈ [0, 1]𝑛:
|||𝑓 (𝑥⃗) − 𝑓 (𝑥′)||| ≤ 𝐾 ⋅ ‖‖‖𝑥⃗ − 𝑥′‖‖‖ (3)

This condition is not fulfilled if there are random influences on the
simulated process, e.g., due to stochastic packet losses. Here we assume
a deterministic behavior of the simulation, the other case is considered
later.
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Table 2
Levels of optimization.

Phase Level 𝑗 𝜍𝑗 𝜀𝑗
Global 3 50% 10−5

Local
2 100% 10−5

1 95% 10−7

0 4% 0

Following Sergeyev and Kvasov [51], a lower bound 𝑀̂ of 𝑓 on a
rectangle 𝑟 with vertices 𝑎⃗, 𝑏⃗ ∈ [0, 1]𝑛 can be estimated using a known
Lipschitz constant 𝐾 as

𝑀̂(𝑟, 𝐾) = 𝑓 (𝑎⃗) + 𝑓 (𝑏⃗)
2

−𝐾 ⋅ ‖‖‖𝑏⃗ − 𝑎⃗‖‖‖ , (4)

where ‖⋅‖ denotes the Euclidean norm. The rectangle with the lowest
lower bound is considered to be most likely to contain the optimal
parameter allocation.

The problem of the estimation using Eq. (4) is its reliance on
a known Lipschitz constant 𝐾. Since the algorithm is dealing with
blackbox functions, that parameter is not known for most problems.
Moreover, 𝐾 acts as a weight between local and global search. If
𝐾 → 0, rectangles with lowest values at their vertices have the
lowest estimation, which is equivalent to local search. Conversely, the
largest rectangles have the lowest estimation for 𝐾 → ∞, which is
equivalent to global search. Therefore, using a too high or too low
estimation of the Lipschitz constant may lead to poorer performance.
Direct circumvents this problem by factoring in all possible 𝐾 ∈ (0,∞).
Let 𝑃 =

{
𝑟1, 𝑟2,… , 𝑟𝑚

}
be the current partition of the search space into

𝑚 rectangles 𝑟1,… , 𝑟𝑚. The set 𝐼 ⊆ 𝑃 of potentially optimal rectangles
consists of all rectangles 𝑟 ∈ 𝑃 that satisfy

∃𝐾∈(0,∞) ∶ 𝑐 𝑜𝑛1 ∧ 𝑐 𝑜𝑛2 (5)

𝑐 𝑜𝑛1 ≡ ∀𝑟′∈𝑃 ∶ 𝑀̂(𝑟, 𝐾) ≤ 𝑀̂(𝑟′, 𝐾) (6)

𝑐 𝑜𝑛2 ≡ 𝑀̂(𝑟, 𝐾) ≤ 𝜙 − 𝜀 ⋅ ||𝜙 − 𝑓 || (7)

Here, 𝑐 𝑜𝑛1 ensures that 𝐼 only contains rectangles which have the
lowest estimate 𝑀̂ for a certain 𝐾. In Eq. (7), 𝑓 denotes the median and
𝜙 the lowest of all values sampled from 𝑓 so far. 𝑐 𝑜𝑛2 is used to filter out
rectangles 𝑟 that satisfy 𝑐 𝑜𝑛1 for one 𝐾 ′ if their lower bound 𝑀̂(𝑟, 𝐾 ′)
cannot undermatch the current minimum 𝜙 by a percentage defined in
the hyperparameter 𝜀. This condition is used to prevent unnecessary
costly sampling in rectangles that cannot – by estimation – yield a
significant improvement. The set of potentially optimal rectangles 𝐼 is
calculated and sampled (as shown in Section 4.1.1) using the condition
in Eq. (5) in each iteration step.

4.1.3. Optimization levels
So far, the described algorithm does not differ much from the

variation proposed by Sergeyev and Kvasov [51]. We now combine
the described partitioning scheme with the leveled approach described
by Liu et al. [49,50]. This approach tries to mitigate global drag, a major
weakness of Direct algorithms: Direct algorithms are known for finding
the basin of the global optimum quickly but being rather slow in locally
refining that optimum. This is due to the search strategy sampling all
potentially optimal rectangles while only one of them may contain the
optimum. Especially for more refined partitions where the basin has
been found and local search should prevail, Direct focuses on global
optimization with equal vigor which leads to unnecessary sampling of
large rectangles.

Simopticon-Direct mitigates the global drag by switching between
different levels of optimization which are locally or globally biased as
proposed by Liu et al. [49,50]. There are four different levels which
are summarized in Table 2. Level 2 is the default level, where no bias
is used. To shift towards a more local optimization, levels 1 and 0
narrow the selection of potentially optimal rectangles to the smallest

rectangles. Let 𝑃 =
{
𝑟1, 𝑟2,… , 𝑟𝑚

}
again be the current partition,

sorted by size of the rectangles in ascending order. The size of a
rectangle 𝑟𝑖 can, for example, be measured as ‖‖‖𝑏⃗𝑖 − 𝑎⃗𝑖

‖‖‖ where 𝑎⃗𝑖, 𝑏⃗𝑖 ∈
[0, 1]𝑛 are the vertices of 𝑟𝑖. For levels 𝑗 = 0, 1, only a subset 𝑃 ′

𝑙 𝑜𝑐 𝑎𝑙 ⊆ 𝑃
is used in rectangle selection, which is defined as

𝑃 ′
𝑙 𝑜𝑐 𝑎𝑙 =

{
𝑟𝑖 ∈ 𝑃 | ‖‖‖𝑏⃗𝑖 − 𝑎⃗𝑖

‖‖‖ ≤ ‖‖‖𝑏⃗𝑘 − 𝑎⃗𝑘
‖‖‖
}

(8)

𝑘 =
⌈
𝜍𝑗 ⋅ |𝑃 |

⌉
(9)

Conversely, there is level 𝑗 = 3 which narrows rectangle selection to
the largest rectangles, thereby creating a global bias. This is inspired
by Sergeyev and Kvasov [51] where a global phase is introduced to
avoid getting stuck in local optima. In the global phase, only a subset
𝑃 ′
𝑔 𝑙 𝑜𝑏𝑎𝑙 ⊆ 𝑃 is used in rectangle selection, which is defined as

𝑃 ′
𝑔 𝑙 𝑜𝑏𝑎𝑙 =

{
𝑟𝑖 ∈ 𝑃 | ‖‖‖𝑏⃗𝑖 − 𝑎⃗𝑖

‖‖‖ ≥ ‖‖‖𝑏⃗𝑘 − 𝑎⃗𝑘
‖‖‖
}
, (10)

where 𝑘 has the meaning of Eq. (9).
Additionally, the local bias is reinforced in levels 1 and 0 by using

smaller values for 𝜀 in rectangle selection (see Table 2). This leads
to rectangles being filtered out less frequently by Eq. (7), i.e., rectan-
gles are explored even though they are not estimated to yield major
improvements.

Simopticon-Direct starts in the local phase with level 2. In a local
phase, the level changes after each iteration in a W-pattern proposed
by Liu et al. [49], i.e., 2-1-0-1-1-0-1-2. After every four iterations the
algorithm checks if a significant improvement was made — otherwise it
switches to a global phase and therefore to level 3. Let 𝜙 and 𝜙′ be the
best sampled values before and after those four iterations, respectively,
and let 𝑓 denote the median of all sampled values. Then the condition
for a switch to a global phase is
𝜙′ ≤ 𝜙 − 𝜀3 ⋅ ||𝜙 − 𝑓 || (11)

When the algorithm switches to a global phase, it resides on level 3
until the condition in Eq. (11) is met again (with 𝜙 being the best
sampled value at the beginning of the global phase) or until 𝑛 iterations
have been completed, whichever happens first. When a global phase
finishes, the algorithm resumes the interrupted W-cycle, i.e., if the local
phase was interrupted after iterations on levels 2-1-0-1, it resumes with
levels 1-0-1-2 after the global phase. In all our studies we chose the
maximum number of iterations in the global phase via the standard
benchmark functions discussed in Section 5.1, which resulted in the
best value for a maximum of 𝑛 = 35 iterations.

4.2. The Monte Carlo optimization algorithm

Besides the previously described optimizer, also a simple Monte
Carlo optimizer is investigated. Monte Carlo methods use random
variables to determine the parameter sets to be simulated [59]. In
this implementation, the Monte Carlo algorithm sets all parameters
randomly in the global defined bounds using a uniform distribution.
Therefore, for a large iteration count, they cover the parameter space
more or less in an equal density, but they do not use knowledge of prior
simulation runs in order to search close to good previous solutions. This
avoids sticking in local optima, but it also makes the optimum search
into a random procedure without any guarantee to reach the global
optimum after a finite number of iterations. Since the step size is not
reduced during optimization, the algorithm does not converge in the
classical meaning of optimization. The only parameter of this optimizer
implementation is the number of parallel simulation runs for speeding
up the optimization procedure.

One further advantage of the Monte Carlo optimizer compared to
the Direct optimizer is that it does not require the Lipschitz con-
dition (3) and, so, is better suited for simulations with stochastic
influences like packet losses. Our implementation of Monte Carlo uses a
fixed random seed in order to allow for reproducible results, despite the
stochastic nature of the method. As the algorithm takes all parameter
sets from the full global parameter space, the influence of the random
seed should be negligible.
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Table 3
Benchmark functions [47] used for validation of the Simopticon-Direct, Monte Carlo,
and Random Neighbors optimization algorithms.

Benchmark function Abbr. 𝑛 Minima

Local Global

Branin BR 2 3 3
Goldstein-Price GP 2 4 1
Six-Hump Camelback C6 2 6 2
Shubert SHU 2 760 18
Hartman 3 H3 3 4 1
Shekel 5 S5 4 5 1
Shekel 7 S7 4 7 1
Shekel 10 S10 4 10 1
Hartman 6 H6 6 4 1

4.3. The Random Neighbors optimization algorithm

The Random Neighbors algorithm is an extension of the Monte Carlo
algorithm. One drawback of the Monte Carlo algorithm is that is does
not know already available knowledge about prior simulation results
and searches always with the same probability in the full parameter
scope. However, searching in the local surrounding of the current
optimum has often been found to be a good idea, e.g., in the famous
simulated annealing approach [60]. In order to use prior results, the
Random Neighbors algorithm uses an adjustable percentage of simula-
tions with parameters narrow around the current optimum, because it is
probable that the simulation results there are better than in the average
of the global parameter scope. In this article, 25% of all simulations
are used to search in a region of ±5% around the current optimum
for each parameter. The other 75% are usual Monte Carlo simulations.
The parameters are adjustable in the software. As long as the current
optimum is far away from the global optimum, this algorithm is worse
than Monte Carlo optimization as there are unnecessarily many simula-
tions around a local optimum that is not the global optimum. Besides,
due to the stochastic nature, also this algorithm cannot guarantee to
converge to the global minimum. Still, like the Monte Carlo optimizer
it does not require the Lipschitz condition (3), what is relevant for
optimizing stochastic simulations. A fixed random seed is used in our
implementation to allow for reproducible results. The fact that 75% of
the tested parameter sets are taken randomly from the full parameter
space (and not only from a surrounding around the current optimum)
should minimize the effect of the random seed selection.

5. Verification

5.1. Standard optimization models

To investigate the feasibility of Simopticon-Direct, Monte Carlo, and
Random Neighbors optimization for low dimensional problems like the
optimization of controller parameters, they have been used to optimize
the problems listed in Table 3. The original Direct algorithm is used as
a baseline since it has been validated on the same benchmarks by Jones
et al. [47]. Here, convergence is defined similarly as by Jones et al. [47]
via the percent error 𝑒 of the current best solution 𝜙 from the global
minimum 𝑓 ∗:

𝑒 = 𝜙 − 𝑓 ∗

|𝑓 ∗| ≤ 𝑒′ (12)

If this condition holds for a given threshold 𝑒′ after an iteration, the
algorithm is considered to have converged on the global minimum.

Table 4 shows the number of evaluations until convergence is
reached for 𝑒′ = 10−4. For low dimensional problems (𝑛 < 4), Simop-
ticon-Direct outperforms the original in most cases. Especially for the
Shubert (SHU) function, a great improvement can be noted. This is
particularly interesting since SHU contains a multitude of local min-
ima, which seem to distract original Direct more than the multi-level

Table 4
Optimizer comparison: number of evaluations until convergence is reached for 𝑒′ = 10−4.
See Table 3 for details on the benchmarks used.

Benchmark Evaluations

Direct [47] Simopticon Direct Monte Carlo Random Neighbors

BR 195 134 17 114 1018
GP 191 210 57 713 572
C6 285 222 5 595 104
SHU 2967 1 822 6 145 3031
H3 199 181 938 3275
S5 155 237 – 6667
S7 145 227 – 5904
S10 145 258 – 2680
H6 571 13 443 – 1457

Table 5
Optimizer comparison: number of evaluations until convergence is reached for 𝑒′ = 10−2.
See Table 3 for details on the benchmarks used.

Benchmark Evaluations

Direct [47] Simopticon Direct Monte Carlo Random Neighbors

BR 63 72 17 120 263
GP 101 168 57 728 104
C6 113 188 5 600 48
SHU 2883 1 780 6 160 325
H3 83 26 944 854
S5 103 182 – 712
S7 97 190 – 724
S10 97 202 – 1029
H6 213 13 299 – 247

approach of Simopticon. On the other hand, problems of higher dimen-
sionality pose a problem to Simopticon-Direct. While the difference is
not excessive for the Shekel functions (𝑛 = 4), Simopticon-Direct fails
to converge in a reasonable number of evaluations for Hartman 6 (H6).
Sergeyev and Kvasov [51] report a similar pattern where their variation
underperforms on Shekel 7 (S7), Shekel 10 (S10) and H6 by orders
of magnitude. Since the variation in Simopticon is heavily based on
work by Sergeyev and Kvasov [51], this issue has been inherited, but
weakened for the Shekel functions.

Table 5 shows the same comparison for a weaker threshold 𝑒′ =
10−2. Monte Carlo optimization yields similarly bad results in both
cases, even failing to converge in less than 107 evaluations for 𝑛 > 2.
Random Neighbors on the contrary needs much fewer evaluations for the
weaker convergence criterion which means that the algorithm is fast to
find the basin of the global optimum but slow in locally refining said
optimum.

5.2. Plexe simulations

To verify the effectiveness of Simopticon-Direct for platoon con-
trollers, it is used with Simopticon to optimize the parameters of the
PATH controller [6]. The other optimization methods are compared to
Simopticon-Direct later in Section 6. The PATH controller has three pa-
rameters 𝐶1, 𝜉, and 𝜔𝑛 (see Section 6.1 for details). Simopticon is used
to find the optimal parameter allocation (𝐶1, 𝜉 , 𝜔𝑛) ∈ [0, 1] × [10, 25] ×
[1, 12]. Each parameter allocation is simulated in Plexe’s Sinusoidal
scenario. This scenario starts with a stable platoon of 8 vehicles driving
at 100 km/h. After maintaining a constant speed for 5 s, the platoon
leader’s acceleration is varied between 1.45 m/s2 and −1.45 m/s2 in
a manner that ensures its velocity matches a sine function with a
frequency of 0.2 Hz, oscillating between 95 km/h and 105 km/h. This
continues until either a crash occurs or the simulation time reaches
60 s. Each simulation of a parameter allocation is repeated 5 times
and the respective error values are calculated as shown in Eq. (1)
and arithmetically averaged to get the performance value 𝜀MCMSE (cf.
Eq. (2)).
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Fig. 3. Sampled locations 𝐶1, 𝜉, 𝜔𝑛 and their corresponding 𝜀MCMSE values in the
parameter space during one optimization run.

Fig. 3 shows the 𝜀MCMSE values sampled throughout the optimiza-
tion process. It is evident that regions which yield bad values, e.g., 𝐶1 <
0.5 are sampled evenly but in low granularity. Conversely, regions with
good values are sampled in great detail as can be seen around the found
optimum (𝐶1, 𝜉 , 𝜔𝑛) = (1, 86∕9, 65∕3Hz). For this parameter allocation a
very low 𝜀MCMSE value of 7.9587×10−5 is calculated. Fig. 3 shows a
clear basin around that optimum, indicating that parameter allocations
with 𝐶1 ≈ 1, 𝜉 ≈ 9, and 𝜔𝑛 ≈ 20 Hz lead to good performances of the
PATH controller.

To validate the expressiveness of the 𝜀MCMSE calculation, Fig. 4
shows the correlation between platoon stability and low 𝜀MCMSE values
by plotting the control error of the simulated vehicles. The control error
is defined as the difference between the target gap 𝑑r ef ,𝑖(𝑡) of the 𝑖th
vehicle to its predecessor and the actual gap 𝑑𝑖(𝑡) and at a given point
in time 𝑡:

𝑒𝑐 (𝑡) = 𝑑r ef ,𝑖(𝑡) − 𝑑𝑖(𝑡) (13)

In this experiment, the target gap was set to 𝑑r ef ,𝑖(𝑡) = 5 m.
Fig. 4(a) shows a simulation using the worst found parameter

allocation (𝐶1, 𝜉 , 𝜔𝑛) = (2∕27, 70∕3, 53∕9Hz) which leads to 𝜀MCMSE value
of 1061.87. It can be seen that bad allocations can lead to deviations
from the target gap of up to 20 m in the mean and even more than
100 m for individual vehicles. Additionally, the simulation ends early
after only 52 s, because a crash occurs in the simulation.

The opposite can be seen in Fig. 4(b) where the behavior of the best
found parameter allocation is plotted. With the found parameters, the
vehicles only deviate up to 11.4 mm from the target gap — on average
only 2.85 mm. Moreover, the graph shows an alternating pattern that
resembles a sine function with 0.2 Hz frequency — the same frequency
in which the leading vehicle alternates its speed in the Sinusoidal
scenario.

6. Case study

As a case study, we now apply the presented methodology to
optimize the parameters of the controllers available in Plexe. We set
out to demonstrate that, for the discussed example, the ranking of

Fig. 4. Control error 𝑒𝑐 (𝑡): Deviation of vehicles from target gap 𝑑r ef ,𝑖(𝑡).

the controllers after optimization is very different to the ranking of
the controllers with default parameterization, an important result for
controller selection. Further, this section will show that both the opti-
mum parameters and the controller ranking depend on the reference
distance.

All simulations have been conducted with Simopticon 1.1.0, OM-
NeT++ 6.0.2, Veins 5.2, as well as the extensions of Plexe 3.1.1 and
SUMO 1.18 linked from the data availability statement at the end of
this article.

The simulations use the default vehicle model of Plexe, i.e., a linear,
double-integrator, first-order lag model with a lag of 𝜏 = 0.5 s. The
input of the vehicle model is the desired acceleration measured in m/s2.
The vehicles have a minimum and maximum acceleration that are
𝑎min = −9 m∕s2 and 𝑎max = 2.5 m∕s2.

Also the communication system uses the default parameters of
Plexe, i.e., an IEEE 802.11p network is used and the beaconing interval
is 100 ms. The packet loss rate of the receivers’ MAC layer is set to zero,
reducing the stochastic behavior of the simulation results. However,
besides the packet loss rate, also other features of Plexe are influenced
by the random seed, e.g., the random backoffs, the antennas, and the
vehicle mobility, but the influence of these aspects on the platoon
performance is rather small using the default settings. The Lipschitz
condition (3) is not fulfilled in the presence of random influences, so
the Monte Carlo or Random Neighbors optimizers might be preferred.
Nevertheless, only one repetition per parameter combination is used in
the optimization runs shown below, because the effect of the number
of repetitions on the optimization result is part of the ongoing research.

For the simulations, two default scenarios of Plexe are used. In both
cases the platoon consists of 8 passenger cars driving on a straight
road from left to right (Fig. 5(a)). In the sinusoidal scenario, the leader
speed starts to oscillate around 100 km/h 5 s after the start of the
simulation. In the braking scenario, the leader starts to break 5 s after
the start, with a deceleration of 8 m/s2, which is slightly below the
maximum deceleration of 9 m/s2, shown in Fig. 5(b). Using both sce-
narios enables implicit multi-objective optimization through 𝜀MCMSE, as
discussed in Section 3.1. This approach ensures that the parameter allo-
cations found are robust, avoiding overfitting to either the sinusoidal or
braking scenario individually. Additionally, these two scenarios cover
two very interesting situations of platooning: Emergency braking is
the most challenging scenario for avoiding vehicle collisions and is
therefore most interesting regarding safety, while the oscillations of the
sinusoidal scenario make string stability issues most clearly visible.

6.1. Controller types

In this study, mainly the controllers available in Plexe are used.
They are called ACC, PATH, Ploeg, Consensus, and Flatbed. All con-
trollers but ACC use information from (simulated) Car2x messages
whereas ACC simulates on-board distance measurements with Radar.

In this section, the control equations of these controllers are given.
Although this content could also be read in the literature, we repeat
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Fig. 5. Plexe scenarios used in simulation.

Table 6
Default spacing policy of Plexe controllers. ‘—’ means that there is no parameter to
adjust the value, it is hardcoded in the source code.

Controller 𝑑0 in m Parameter ℎ in s Parameter

ACC 2 – 0.3/1.2 accHeadway
PATH 5 caccSpacing 0 –
Ploeg 2 – 0.5 ploegH
Flatbed 5 flatbedD 0 –
Consensus 15 – 0.1 headway
Yan 20 yanR 0 –

these equations here for two reasons: First, the equations show the
meaning of the parameters of each controller which are optimized
by Simopticon. Second, the equations make clear why the control
performance of some controllers depends on the reference distance,
while for others, it does not.

The reference distance, also called formation geometry or inter-vehicle
spacing policy, is called 𝑑r ef ,𝑖(𝑘) for all controllers and in general defined
as

𝑑r ef ,𝑖(𝑘) = 𝑑0 + ℎ ⋅ 𝑣𝑖(𝑘) (14)

with standstill distance 𝑑0 and time headway ℎ. 𝑣𝑖(𝑘) is the velocity of
the vehicle with index 𝑖 and 𝑘 the sampling instant. For all controllers
only one of these two parameters is adjustable, the other one is fixed.
The default values of these parameters are shown in Table 6.

The ACC controller, taken from Ioannou and Chien [61] and Raja-
mani [7], is implemented in Plexe as

𝑎𝑖(𝑘) = min
(
𝑎𝑖,max,max

(
−𝑎decel, 𝐾𝑝 ⋅ (𝑣𝑖(𝑘) − 𝑣des)

))
, (15)

if the distance to the previous vehicle is greater than 250 m (Cruise
Control (CC)), and

𝑎𝑖(𝑘) = 1
ℎ

(
𝑣𝑖(𝑘) − 𝑣𝑖−1(𝑘) + 𝜆

(
𝑑r ef ,𝑖(𝑘) − 𝑑𝑖,𝑖−1(𝑘)

))
, (16)

otherwise. Due to the factor 1∕ℎ, this controller requires a nonzero time
headway ℎ and can therefore not be used for a constant target distance.
If the value computed by the CC controller is smaller than the value
computed by the Adaptive Cruise Control (ACC), CC is used, even if the
distance is below 250 m. So, in ACC mode there is only one controller
parameter (𝜆), besides the adjustable headway ℎ.

The PATH controller (that is called CACC in Plexe) is implemented
according to Swaroop et al. [6]. It is often called the PATH controller
because it has been developed in the California PATH project at UC
Berkeley [6]. It is implemented as

𝑎𝑖(𝑘) = 𝛼1𝑎𝑖−1(𝑘) + 𝛼2𝑎𝐿(𝑘) + 𝛼3
(
𝑣𝑖(𝑘) − 𝑣𝑖−1(𝑘)

)

+ 𝛼4
(
𝑣𝑖(𝑘) − 𝑣𝐿(𝑘)

)
+ 𝛼5

(
𝑑r ef ,𝑖(𝑘) − 𝑑𝑖,𝑖−1(𝑘)

)
, (17)

where index 𝐿 references the platoon leader and 𝑖− 1 the predecessor of
the controlled vehicle. Its parameter selection in Plexe is based on the

sliding surface method of controller design [7,62], which reduces the
number of independent parameters from five, that is (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5),
to three, that is, (𝐶1, 𝜉 , 𝜔𝑛):

𝛼1 = 1 − 𝐶1 (18)

𝛼2 = 𝐶1 (19)

𝛼3 = −
(
2𝜉 − 𝐶1 ⋅

(
𝜉 +

√
𝜉2 − 1

))
⋅ 𝜔𝑁 (20)

𝛼4 = −
(
𝜉 +

√
𝜉2 − 1 ⋅ 𝜔𝑁 ⋅ 𝐶1

)
(21)

𝛼5 = −𝜔2
𝑁 (22)

The Ploeg controller, based on the work of Ploeg et al. [63], is
implemented as
𝛥𝑢𝑖(𝑘)
𝛥𝑇

= 1
ℎ
⋅
(
−𝑢𝑖(𝑘) + 𝑘𝑝𝑒𝑖(𝑘) + 𝑘𝑑 𝑒̇𝑖(𝑘) + 𝑢𝑖−1(𝑘)

)
, (23)

𝑒𝑖(𝑘) = 𝑑𝑖(𝑘) − 𝑑r ef ,𝑖(𝑘), (24)

𝑒̇𝑖(𝑘) = 𝑣𝑖−1(𝑘) − 𝑣𝑖(𝑘) − ℎ ⋅ 𝑎𝑖(𝑘), (25)

𝑎𝑖(𝑘) = 𝑎𝑖(𝑘 − 1) + 𝛥𝑢𝑖(𝑘). (26)

Also this controller requires a nonzero time headway ℎ and cannot
be used for a constant target distance. Note that this implementation
differs from the original controller [63]: Besides the missing 𝑒𝑖(𝑘) part,
the implementation in Plexe uses a first order lowpass system for the
full controller while Ploeg [63] uses only a first order lowpass system
to estimate the real acceleration from the transmitted desired acceler-
ation. The Plexe version of the Ploeg controller has two parameters: 𝑘𝑝
and 𝑘𝑑 .

The Flatbed controller (developed by Ali et al. [18]) is implemented
as

𝑎𝑖(𝑘) = −𝐾𝑎𝑎𝑖(𝑘 − 1) +𝐾𝑣

(
𝑣𝑖−1(𝑘) − 𝑣𝑖(𝑘)

)

+𝐾𝑝

(
𝑑𝑖,𝑖−1(𝑘) − 𝑑r ef ,𝑖 − ℎdes

(
𝑣𝑖(𝑘) − 𝑣𝐿(𝑘)

))
. (27)

However, the original work by Ali et al. [18] computed the jerk 𝑊 with
this equation, not the acceleration 𝑎𝑖(𝑘).

Plexe contains also a Consensus controller, to be more specific a
version developed by Santini et al. [9]. However, this controller’s
implementation is not parameterizable in the way the other controllers
can be parameterized. Instead of making the parameters of the existing
implementation adjustable, we decided to implement another version
of the consensus controller based on Yan et al. [8], because it has
a similar control strategy, but a more flexible and simple way for
parameterization and a stronger focus on network issues like delays
and packet losses. We call it the Yan controller. The basic idea of the
consensus controller is that each vehicle compares its own position,
speed, and acceleration with the values of all or a subset of all other
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Table 7
Control performance 𝜀MCMSE before and after optimization. The default reference distance parameters belong to Eq. (14). With respect to Eq. (14), reference distance 5 m means
a fixed distance of 𝑑0 = 5 m and ℎ = 0 for controllers working with a constant reference distance (PATH, Flatbed, and Yan) as well as 𝑑0 = 2 m and ℎ = 0.108 s for controllers that
require a nonzero headway (ACC and Ploeg). Reference distance 35 m means 𝑑0 = 35 m and ℎ = 0 for controllers working with a constant reference distance as well as 𝑑0 = 2 m
and ℎ = 1.188 s for controllers that require a nonzero headway.

Controller Default ref. dist. Unoptimized (using default parameters) Optimized for ref. dist. 5 m Optimized for ref. dist. 35 m

𝜀MCMSE (m2) Rank 𝜀MCMSE (m2) Rank 𝜀MCMSE (m2) Rank

ACC 𝑑0 = 2 m, ℎ = 1.2 s 2.405 4 ∙∙ 11.037 5 ∙ 5.628×10−7 1 ∙∙∙∙∙
PATH 𝑑0 = 5 m, ℎ = 0 0.639 2 ∙∙∙∙ 4.683×10−3 4 ∙∙ 4.686×10−3 5 ∙
Ploeg 𝑑0 = 2 m, ℎ = 0.5 s 0.0642 1 ∙∙∙∙∙ 4.016×10−4 2 ∙∙∙∙ 1.195×10−6 2 ∙∙∙∙
Flatbed 𝑑0 = 5 m, ℎ = 0 0.692 3 ∙∙∙ 9.129×10−5 1 ∙∙∙∙∙ 9.131×10−5 3 ∙∙∙
Yan 𝑑0 = 20 m, ℎ = 0 14.730 5 ∙ 4.030×10−4 3 ∙∙∙ 4.036×10−4 4 ∙∙

vehicles. Using a simplified notation, the Yan controller is implemented
as

𝑢𝑖(𝑘) = −
𝑛∑

𝑗=1
𝛼𝑖𝑗

[ (
𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘) − 𝑑𝑖𝑗

)

+ 𝛽 ⋅
(
𝑣𝑖(𝑘) − 𝑣𝑗 (𝑘)

)
+ 𝛾 ⋅

(
𝑎𝑖(𝑘) − 𝑎𝑗 (𝑘)

) ]

− 𝜅

[ (
𝑥𝑖(𝑘) − 𝑥0(𝑘) − 𝑑𝑖0

)
+ 𝜂 ⋅

(
𝑣𝑖(𝑘) − 𝑣0(𝑘)

)

+ 𝛯 ⋅
(
𝑎𝑖(𝑘) − 𝑎0(𝑘)

) ]
,

(28)

where 𝑥𝑖 is the position of vehicle 𝑖, 𝑑𝑖𝑗 the reference distance between
the vehicles 𝑖 and 𝑗 (the sum of the reference distances 𝑑r ef ,𝑖 and the
vehicle lengths of all vehicles in between), 𝜅 represents the weighting
of the leader, 𝛽 and 𝜂 the weighting of the velocity difference and 𝛾
and 𝛯 the weighting of the acceleration difference. Via the adjacency
matrix (delivering 𝛼𝑖𝑗) the topology can be specified. In the case study,
a predecessor-leader-following topology is used, i.e., all 𝛼𝑖0 and 𝛼𝑖,𝑖−1
are equal to 1 and all other 𝛼𝑖𝑗 are equal to zero.

6.2. Stability and string stability

Stability is a fundamental requirement in control applications and
stability proofs build the core of most publications about control al-
gorithms. In the case of platooning, besides internal stability [64] or
individual vehicle stability [63] of each vehicle also string stability for
the whole platoon is typically proven. There are a lot of string stability
definitions [65]. Roughly speaking, a platoon is called string stable if
there is no frequency for which speed oscillations are amplified from
one vehicle to the next one. However, in this article, no stability proofs
are given, because controllers are optimized based on a performance
measure, not based on theoretic stability criteria.

The currently implemented optimizers of Simopticon take only sim-
ulation results into account, no theoretical stability checks. In most
cases a control loop with optimal simulation results will surely be stable
because in unstable control loops oscillations will lead to poor control
performance. Nevertheless, a simulation is a case study and no proof
for stability.

Future versions of Simopticon might also take stability conditions
into account. Stability conditions typically limit the parameter space
that is allowed to be used in the optimization procedure. However, if
the global optimum lies in the region allowed by the stability criterion,
it is not absolutely necessary to take these conditions into account;
it only might speed up the convergence to the optimum. On the
other hand, if the optimum lies outside of the region allowed by the
stability condition, this condition should be revisited; maybe it bases
on simplified assumptions that are not held by complex simulations.
Alternatively, the stability condition might have higher priority because
potential stability issues of a parameter set might be hidden in a
concrete simulated scenario.

It is possible to integrate stability checks either in the optimizers or
in the evaluation modules of Simopticon, but this has not been done

yet. Both for internal or individual stability as well as string stability
such conditions could be included.

For example, the PATH controller is string stable for 𝜉 ≥ 1 and
𝐶1 < 1 and the spacing error converges to zero [7]. These are simple
conditions that can be taken into account during optimization by
limiting the parameter bounds appropriate to that. In principle, such
stability conditions can be implemented as part of either the optimizer
or evaluation modules, so that parameter combinations that do not
fulfill them can be discarded. If they are implemented as part of the
optimizer, they can be checked before starting a simulation, improving
optimization performance. But note that sufficient (but not necessary)
conditions might exclude the best solutions regarding control perfor-
mance from the parameter space. As there are many string stability
definitions, in the best case all of them should be checked.

6.3. Comparison before optimization

In Plexe, all controllers have default parameters. The control perfor-
mance 𝜀MCMSE for each controller using the default settings is shown
in Table 7 on the left-hand side. This is the sum of the metrics for
both scenarios, i.e., the sinusoidal scenario and the braking scenario. As
Plexe contains two configurations of the ACC controller (only differing
in the value of the headway ℎ), the one using ℎ = 1.2 s has been used,
because only this one is string stable. The corresponding inter-vehicle
distances are visualized in Figs. 6 and 8 for the sinusoidal and braking
scenario, respectively, and the corresponding control errors in Figs. 7
and 9. Inter-vehicle distance and control error show a similar behavior,
but the control error is more important for the optimization while
the distances make the influence of the controller-dependent reference
distance more visible.

Since the reference distance also has an influence on the control
performance (at least for the controllers requiring ℎ > 0), a comparison
between different controllers based on different reference distances is
not fair.

6.4. Optimization

As already mentioned, the behavior of some controllers depends on
the reference distance (spacing policy). This is especially true for the
ACC controller which is only string stable for a time headway larger
than 1 s [7]. Therefore, two reference distances (i.e., setpoints) have
been selected to show optimization results for these distances. The first
distance is selected as 5 m, because that is the default distance in Plexe
for the controllers PATH and Flatbed. The second reference distance is
set to 35 m, because this allows a headway larger than 1 s for the ACC
controller.

Besides the controller parameters, also the reference distance could
be optimized instead of showing two simulation studies for a different
reference distance. However, the control performance of CACC, Flatbed,
and Yan can be expected to be mostly independent of the reference
distance, that is, only slightly influenced by numeric aspects and an
increased packet loss rate for a higher reference distance, as confirmed
by the following simulations. On the other hand, for ACC and Ploeg
the control performance massively improves with increasing reference
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Fig. 6. Simulation results of unoptimized controllers for the original reference distance and the sinusoidal scenario. Shown is the distance in front of each vehicle to its predecessor.

Fig. 7. Simulation results of unoptimized controllers for the original reference distance and the sinusoidal scenario. Shown is control error (i.e., the difference between the reference
distance and the real distance in front of each vehicle to its predecessor).

Fig. 8. Simulation results of unoptimized controllers for the original reference distance and the braking scenario. Shown is the distance in front of each vehicle to its predecessor.

Fig. 9. Simulation results of unoptimized controllers for the original reference distance and the braking scenario. Shown is control error (i.e., the difference between the reference
distance and the real distance in front of each vehicle to its predecessor).

distance (see Section 6.5), only limited by increasing packet losses
at large distances for the Ploeg controller (not for ACC as this does
not use communication). But having a very large gap between the
vehicles is contrary to the main goals of platooning. So, if the reference
distance is optimized automatically, some partial metric for penalizing
large distances should be added. Its weighting, though, would be very
subjective; therefore, this is out of scope of this article.

Even the selection of a controller type could be part of the opti-
mization strategy. This is not done in our optimization study because
we want to show the different optimization results for the different
controllers. Nevertheless, if the optimizer would also optimize the

controller type, it should deliver the controller with the lowest 𝜀MCMSE
of our simulation study, depending on the reference distance. For doing
that, an extension of the optimization framework would be beneficial
because the controllers have different parameters so that the parameter
space is much larger if several controllers are taken into account, but for
each controller only a few parameters have an influence on the control
performance. Considering the efficiency of such optimization tasks is
not implemented in Simopticon yet.

Several controllers (ACC and Ploeg in Plexe) require a headway
ℎ > 0, so that the reference distance is not constant but depends on the
speed. In order to make such controller types comparable, the reference
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Table 8
Optimized parameters. With respect to Eq. (14), reference distance 5 m means a fixed distance of 𝑑0 = 5 m and ℎ = 0 for controllers working
with a constant reference distance (PATH, Flatbed, and Yan) as well as 𝑑0 = 2 m and ℎ = 0.108 s for controllers that require a nonzero headway
(ACC and Ploeg). Reference distance 35 m means 𝑑0 = 35 m and ℎ = 0 for controllers working with a constant reference distance as well as
𝑑0 = 2 m and ℎ = 1.188 s for controllers that require a nonzero headway.
Controller Parameter Original value Parameter limits Optimum (ref. 5 m) Optimum (ref. 35 m)

ACC 𝜆 0.1 s−1 0 . . . 2000 s−1 3.755 91 s−1 1595.90 s−1
PATH 𝐶1 0.5 0 . . . 1 0.842 0.842

𝜉 1 1 . . . 1000 115.35 115.35
𝜔𝑛 0.2 Hz 0 . . . 2 Hz 0.0143 Hz 0.0143 Hz

Ploeg 𝑘𝑝 0.2 s−2 0 . . . 100 000 s−2 48 038.8 s−2 59 682.7 s−2
𝑘𝑑 0.7 s−1 0 . . . 100 000 s−1 7494.06 s−1 6972.18 s−1

Flatbed 𝐾𝑎 2.4 0 . . . 80 9.41 9.41
𝐾𝑣 0.6 s−1 0 . . . 1000 s−1 139.48 s−1 139.48 s−1
𝐾𝑝 12.0 s−2 500 . . . 1000 s−2 628.70 s−2 628.70 s−2
ℎdes 4.0 s 0 . . . 20 s 1.523 s 1.523 s

Yan 𝛽 1.2 s 0 . . . 200 s 182.062 s 182.062 s
𝛾 2.5 s2 0 . . . 50 s2 37.4966 s2 37.4966 s2
𝜅 1.2 0 . . . 200 135.464 135.464
𝜂 1.1 s 0 . . . 10 s 1.265 31 s 1.265 31 s
𝛯 6.5 s2 0 . . . 10 s2 0.060 078 9 s2 0.060 078 9 s2

distance 𝑑0 is set to 2 m (fitting to the Plexe value for the ACC and Ploeg
controllers) and the time headway ℎ such that the reference distance at
the mean speed is 5 m and 35 m, respectively. Assuming a mean speed
of 100 km/h, this results in a time headway ℎ of 0.108 s and 1.188 s,
respectively.

The parameter limits have been selected in several manual trials so
that the found optimum does not lie at the bounds of the limits: If, after
an optimization run, the optimum was found at one of the limits, the
parameter range was increased and the optimization was started again.

For the optimization, the Monte Carlo optimizer is used with (at
least) 1000 evaluations (i.e., random parameter combinations) for each
controller. Each evaluation contains 2 simulations (both of the scenar-
ios) without repetitions. The used metric is 𝜀MCMSE as defined in (2).
The optimized parameters for both reference distances of 5 m and 35 m
can be found in Table 8. Roughly 5 to 8 h were necessary to run 1000
evaluations, depending on the used computer resources.

For one example (the optimization of the Flatbed controller for a
reference distance of 35 m) the progression of the best found solution
(the performance measure 𝜀MCMSE) as a function of the evaluation
number is shown in Fig. 10 for all three optimization strategies. In
this example, different to the test functions discussed in Section 5,
Simopticon-Direct converges slower than the other two optimizers. The
reason might be the large number of local optima compared to the
test functions. As stated above, in general only 1000 evaluations have
been used — although it can be seen that the optimum improves
significantly also later. The reason for taking 1000 evaluations is mainly
the processing time together with the fact that it is never clear if the
global optimum has been reached or not, even for extremely high
iteration numbers. Besides, it should be emphasized that this is only
a case study and does not claim to deliver perfect results.

6.5. Comparison after optimization

The performance evaluation for each of the optimized controllers is
shown in Table 7 for a reference distance of 5 m and for a reference
distance of 35 m, respectively. According to the 𝜀MCMSE values, the
Flatbed controller seems to be the best controller for 5 m, and the Ploeg
controller for 35 m.

We will first analyze the case with a reference distance of 5 m. The
distance between the vehicles as a function of time and the control error
are shown in Fig. 11 for the sinusoidal scenario and in Fig. 13 for the
braking scenario, respectively.

In the sinusoidal scenario, the Flatbed controller shows only distance
errors up to 1.6 cm, which is negligible from a practical point of view,
taking into consideration the reference distance of 5 m (the error is

Fig. 10. Comparison of three optimization algorithms for the optimization of the
Flatbed controller for a reference distance of 35 m. Shown is the evaluation of the
current optimum as a function of the number of evaluations.

lower than 0.3% of the reference distance). The PATH controller shows
distance errors up to 6 cm, where the distance error is for the first
follower much larger than for the subsequent vehicles in the platoon.
For the Ploeg controller there are oscillations with an amplitude larger
than 10 cm that result from the time headway ℎ > 0, i.e., from the
speed-dependent reference distance. To make the control error more
comparable it is reasonable to plot the control error instead of the
distance (lower row of Fig. 11). However, this hides the obvious issue
that a constant target distance is not met by this type of controller. The
Yan controller has distance errors up to 1.6 cm. The worst behavior
can be seen for the ACC controller. This simulation run contains a
vehicle collision at the time instance where the distance reaches zero.
Plexe finishes the simulation also in this case, but this is not (yet)
considered by the evaluation script. This could be fixed relatively
simply by checking the simulation duration or the minimum distance
in the evaluation code, but this case occurs only if the optimizer finds
no parameter setting with acceptable performance like for the PATH,
Ploeg, Flatbed, or Yan controllers. So even if that fix would be made,
comparable results to the other controllers cannot be expected. The
main problem is that the ACC controller is only string stable for a time
headway larger than 1 s – which is not fulfilled for a reference distance
of 5 m and a mean speed of 100 km/h.

In the braking scenario the distance errors of the Flatbed controller
are even below 0.7 cm. The ACC controller shows a vehicle collision
here as well. The difference between controllers with a fixed reference
distance and controllers with a nonzero time headway is more obvious
here – while the final vehicle distance for the former controllers is
roughly 5 m, for the latter ones it is roughly 2 m, according to the
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Fig. 11. Simulation results of optimized controllers for a reference distance of 5 m and the sinusoidal scenario. Shown is the distance in front of each vehicle to its predecessor
(top) and control error (bottom).

Fig. 12. Simulation results of optimized controllers for a reference distance of 35 m and the sinusoidal scenario. Shown is the control error.

Fig. 13. Simulation results of optimized controllers for a reference distance of 5 m and the braking scenario. Shown is the distance in front of each vehicle to its predecessor (top)
and control error (bottom).
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Fig. 14. Simulation results of optimized controllers for a reference distance of 35 m and the braking scenario. Shown is the control error.

Fig. 15. Simulation results of optimized flatbed controller for a reference distance of 5 m. Shown is the control error.

Table 9
Optimization of the Flatbed controller with the Random Neighbors strategy for a
reference distance of 5 m and increased number of evaluations.

Parameter Original value Parameter limits Optimum

𝐾𝑎 2.4 0 . . . 80 3.897 27
𝐾𝑣 0.6 s−1 0 . . . 1000 s−1 92.5263 s−1
𝐾𝑝 12.0 s−2 500 . . . 1000 s−2 916.569 s−2
ℎdes 4.0 s 0 . . . 20 s 0.463 197 s

different values of the stand-still distance 𝑑0.
The simulation results for a reference distance of 35 m are shown

in Figs. 12 and 14. For the controllers PATH, Flatbed and Yan, the
simulation results are nearly identical to those for the 5 m case (with
the only difference that the distance oscillates around 35 m instead of
5 m), also resulting in nearly identical 𝜀MCMSE values in Table 7. The
reason is that the control algorithms work independent of the absolute
reference distance: only relative errors to that reference distance are
taken into account. The conclusion of this (expected) result is that it is
possible to decrease the reference distance further without degrading
the control performance or a risk of vehicle collisions.

In contrast to the other controllers, the ACC and Ploeg controllers
work much better for 35 m than for 5 m. This can be seen most clearly
in Table 7 and in the braking scenario (Fig. 14 compared to Fig. 13).
The performance measures are even better than that for the other
controllers, but the oscillations around the reference distance of 35 m
are high due to the velocity-dependent spacing policy. Due to the large
reference distance, there are no vehicle collisions at all: for none of the
controllers and neither for the sinusoidal nor for the braking scenario.

Due to the very good behavior of the Flatbed controller for the 5 m
reference case, this controller is optimized with an extended number
of evaluations (see also Fig. 10). The parameters after optimization
are shown in Table 9, the performance is 𝜀MCMSE = 7.207×10−6 m2.
The simulation using the best found parameter set is shown in Fig. 15.
Distance errors less than 1 cm are reached in both scenarios (sinusoidal
and braking scenario).

7. Conclusion

In this article we demonstrated the benefits of a methodology for
parameter selection that encompasses all of: an evaluator employing
a common metric, a simulator component, and an optimizer – along
with an open-source reference implementation. We also discussed the
trade-offs of different optimization algorithms, both from the literature
and custom-built, for parameter optimization of platooning controllers.

While the state of the art regarding platoon controllers focuses on
stability proofs, the optimization presented in this article delivers a
concrete set of parameters that minimizes a defined cost function. The
case studies with Plexe showed that all integrated controllers have a lot
of potential for optimization compared to their default parameteriza-
tion. The case study showed also that the type of optimization strategy
matters. A clear outcome of the case study is also that the reference
distance has an enormous influence on the control quality of some
of the controllers, thus also the selection of a control strategy should
depend on the reference distance.

The article and the provided open-source software lays the foun-
dation for the optimization of more platoon controllers and a fair
comparison of controllers. Future work will also focus on optimization
in the presence of packet losses and other stochastic model parts as well
as the influence of network properties.
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