
Optimizing Very Large Scale ITS Applications With
Fast Fitness Evaluation

Nagacharan Teja Tangirala∗, Rouven Rischert∗, Christoph Sommer†, and Alois Knoll∗
∗Chair of Robotics, Artificial Intelligence and Real-time Systems, Technical University of Munich, Munich, Germany

†TU Dresden, Faculty of Computer Science, Germany
nagacharan.tangirala@tum.de, ge47max@mytum.de, cms-labs.org/people/sommer, k@tum.de

Abstract—As wireless communication technology advances, the
complexity of Vehicular Ad-hoc Network (VANET) simulations
increases. This, however, is at odds with the need for increasingly
large-scale Intelligent Transportation Systems (ITS) scenarios to
satisfy the demands of increasingly Artificial Intelligence (AI)
based solutions. This paper aims to demonstrate that a high-
performance simplified VANET simulator can be used for fitness
evaluation without loss in solution quality. As an example, we
implement a Roadside Unit (RSU) deployment approach based on
a genetic algorithm. Disolv, a simplified VANET simulator, is used
as a fitness evaluation tool. To validate the solution quality, the
best solutions of a few select generations are evaluated with a fully-
featured ns-3 driven VANET simulation. From the comparison of
fitness values, it can be observed that the values from Disolv allow
us to predict those obtained via ns-3. Further, the execution time
analysis showcases the substantial performance gains of using a
more abstract VANET simulator. A 4.6-hour analysis with Disolv
contrasts approximately 300 days with ns-3 for the given scenario
and settings. Finally, the potential applications and limitations of
using a simplified VANET simulator are discussed.

Index Terms—Optimization, Simulation, Roadside Unit (RSU)
Placement, VANET Simulation, High performance

I. INTRODUCTION

Innovations in the smart city paradigm expand the applica-
tions of Intelligent Transportation Systems (ITS). As a result,
there is a need to introduce new technologies, such as 5G and
beyond, to satisfy the growing communication demands.

ITS applications are generally evaluated with the help of
Vehicular Ad-hoc Network (VANET) simulators because of
the expensive real-world trials. The change in paradigm and
the new technologies have led to the development of several
VANET simulators with even more complexity. 5GPy [1] and
Simu5G [2] are some examples of recently proposed 5G system-
level simulators.

Most VANET simulators, including the newly proposed 5G
simulators, struggle with scalability because of the intention of
high-fidelity modeling. Without the help of High-Performance
Computing (HPC) resources, it is challenging to study large-
scale scenarios. Researchers circumvent the issue by conducting
small-scale evaluations. However, this may no longer be feasi-
ble due to the increasing involvement of Artificial Intelligence
(AI), both in the protocol management as well as the ITS
applications. ITS application with AI tends to require extensive
data, making small-scale evaluations unreliable. Hence, large-
scale VANET simulations are becoming a necessity.

In addition to scalability in terms of scenario size, some ITS
applications are based on solutions requiring computationally
intensive optimization approaches. A common example where
optimization approaches are used is network infrastructure
planning. For example, deploying Roadside Units (RSUs) or
edge servers [3] over a city is a network planning study.
Each possible configuration must be simulated during the
parameter space exploration to determine the solution’s quality.
Each simulation run will take considerable time if a VANET
simulator of high fidelity is used. The run-time can be extremely
high at a large scale, making it difficult to traverse the parameter
space and find an optimal solution.

This paper proposes an approach to solve optimization
problems for very large-scale ITS applications. The high
computational complexity is addressed by evaluating solution
quality using a high-performance abstract VANET simulator.
Initially, we quantify the performance benefits of using a
high-performance VANET simulator through execution time
comparisons. Also, we show a negligible deviation in the final
optimal solution quality compared to a high-fidelity VANET
simulator. For the sake of demonstration, we consider an RSU
placement optimization study, Genetic Algorithm for Road-
Side Unit Deployment (GARSUD) [4]. As a high-performance
abstract VANET simulator, we select Disolv [5] and validate
the optimal solution with ns-3.

II. RELATED WORK

Optimization approaches are commonly employed in in-
frastructure planning studies such as RSU and Edge Server
placement [3]. Efficient placement of RSUs is essential to
support ITS applications such as content delivery [6]. Authors
of [7] highlight the key role of RSUs in enabling AI applications
within ITS. Literature has several applications of optimization
approaches to RSU placement. Authors of [8] conducted an
RSU placement study for a highway scenario to minimize the
transmission delay, with the problem formulated as Integer
Linear Programming (ILP). Authors of [9] carried out a similar
study to determine a minimal delay deployment. Authors of [10]
used ant colony optimization heuristic for RSU placement. For
our analysis, we select GARSUD, a genetic algorithm based
RSU placement study [4].

VANET simulators are commonly used in optimization ap-
proaches for fitness evaluation. Standalone network simulators
such as ns-3 or OMNeT++ are also used to study VANET

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

2025 IEEE Wireless Communications and Networking Conference (WCNC 2025)



scenarios. The introduction of 5G and beyond encouraged the
development of simulators dedicated to the study of 5G. Even
the most recent VANET simulators, such as VSIM [11], focus
on high-fidelity and protocol research. A major limitation with
most VANET simulators is that they are designed for high
fidelity, which results in poor scalability. As a result, the run
times for a simulation run are high, making them unsuitable
for fitness evaluation in optimization.

A common workaround to the scalability of VANET simula-
tors is to reduce the scenario scale. This can be observed even
in the RSU placement studies. In [4], authors employed ns-2
to simulate a small-scale scenario with a maximum of 400
vehicles. In [8], ns-2 is used for evaluation, with 50 runs per
configuration. The authors dealt with scalability and the larger
number of iterations by considering a small-scale scenario with
a maximum of 50 vehicles. With the increasing complexity
in the ITS applications, such small-scale scenarios do not
represent the city-scale behavior accurately. Hence, carrying
out large-scale VANET simulations is essential.

Another workaround for scalability is the custom imple-
mentation of VANET simulations. This can be observed in
traffic light studies such as [12], where the authors developed
a traffic density-based control system. For RSU placement,
authors of [10] used a custom implementation to evaluate
fitness. The custom implementation facilitated the simulation
of scenarios of up to 1000 vehicles. A major issue with such
custom implementations is the lack of support for reusability.
Such problem-specific simulation software is often not made
available to other researchers. Hence, a better approach is
to employ an open-source simplified VANET simulator like
Disolv [5], which is accessible to other researchers.

III. WORKFLOW

A typical workflow of solving any ITS application using an
optimization approach executes three phases (Initialization,
Exploration, Evaluation), repeating the latter two until a
satisfactory solution is reached. In more detail:

1) Initialization: An initial solution is the starting point for
the optimization approach. This can either be obtained from
the real world or generated randomly depending on the ITS
application. Initialization must be done carefully because further
exploration by the algorithm depends on the starting point.
Carrying out multiple optimization runs with varying initial
conditions is often recommended. Otherwise, a metaheuristic
can also be used to avoid the local minima problem.

2) Evaluation: One of the primary steps in the workflow
is evaluating the solution’s quality. Often, an ITS application
requires a complete simulation run to determine the solution
quality. This is especially applicable to network planning
studies at the city scale. Any infrastructure placement solution
can only be evaluated by simulating at least 24 hours to capture
the entire day’s traffic pattern. Optimizing only for peak-hour
or off-peak traffic may be insufficient. The number of possible
candidate solutions to evaluate can also be significantly large
depending on the optimization approach. Further, the number
of agents to simulate will be considerably higher because of

the city-scale scenario. As a result, the evaluation step can
become a huge performance bottleneck in the context of ITS
applications. Hence, making the evaluation step efficient can
result in noticeable performance gains. This allows users to
arrive at an optimal solution in a reasonable time.

3) Exploration: The optimization approach continues to
explore possible candidates until a satisfactory solution is
obtained. The exploration phase highly depends on the chosen
heuristic. For example, the next candidate to explore in a
genetic algorithm depends on parent selection, crossover, and
mutation steps [4]. In the simulated annealing technique, the
next candidate to explore is decided based on the annealing
temperature scheduled by the user. Once a candidate solution
is prepared, the workflow returns to the evaluation phase and
the cycle continues.

In addition to the computation efforts involved in the
three phases, hyperparameter tuning can be challenging. A
few runs of the entire workflow must be carried out to
determine appropriate hyperparameters for a given scenario,
ITS application, and the selected heuristic. If the heuristic does
not perform as expected, a different heuristic must be selected,
and the hyperparameter tuning efforts must be repeated for the
new heuristic. All of this costs significant computation efforts.
Hence, optimization workflows are computationally demanding
and are often carried out with the help of HPC resources.

IV. GARSUD

GARSUD follows the same optimization workflow that is
described in the previous section. In this section, we describe
the original implementation and the modifications.

A. GARSUD with ns-2

RSU placement involves deployment of RSUs subject to
various constraints. Hence, this is a suitable problem that can be
solved with the optimization workflow. Several implementations
are proposed in the literature, of which we selected a genetic
algorithm approach called GARSUD [4]. Genetic algorithm is
a metaheuristic based on the concept of natural selection in
biological evolution [13]. A population of individuals undergoes
evolutionary processes, such as parent selection, mutations, re-
combinations, and selection. Only the individuals adapted to
survive can reproduce and advance to subsequent generations.
The less fit individuals automatically do not survive. A similar
idea is extended to solve an optimization problem. A random
solution undergoes evolution to eventually return an optimal
solution.

In GARSUD, the expected optimal solution is the RSU
placement. Each RSU placement is represented as an individual.
In genetic algorithm terms, it is called a chromosome. The
input map is divided into a grid with small cells, for example,
42x42m. Each cell is provided with a unique identifier. Given
a set of RSUs to be placed, an array of their respective
cell’s identifiers represents the individual placement. In the
evolution terminology, this acts as a chromosome, and all
genetic operations are performed on it. An example of a
chromosome is shown in Figure 1. For a 4-RSU scenario in a



1 2 3

4 5 6

7 8 9

3 4 8 9

Chromosome

Figure 1. An example of a Chromosome for 4-RSU scenario with map divided
into 9 grid cells

9-cell map, an array of 4 elements represents a chromosome.
Each element in the array indicates the position of each RSU.
An RSU assigned to a cell is placed randomly at one of the
intersections within the cell.

The entire operation of the genetic algorithm depends on
the fitness evaluation. It plays a crucial role in determining
the quality of the chromosome, which in this case is the RSU
placement. At the end of each generation, a predefined percent-
age of chromosomes with the best fitness values are selected
as parents. The selected parents undergo crossover and re-
combination operations. A new set of individual chromosomes
is generated as the next generation. Some randomization is
introduced as mutation to avoid local minima issues. Finally,
some portion of the parents with the best fitness values continue
to survive in the coming generation. As a result, there is no
chance of losing the best solution if it is found early in the
evolution process.

The optimization workflow defined in Section III on the
preceding page fits the overall procedure followed in the
GARSUD implementation. In GARSUD, authors used ns-
2 in the evaluation step of the optimization workflow. The
objective focused on finding the deployment that reduces
the transmission latency of emergency messages sent to the
vehicles. The objective can be anything; the only criterion is
that it represents good VANET conditions. Because of the
performance limitations of ns-2, authors were constrained by
the number of evaluations they could perform. As a result, the
scenario settings are relatively simplified. The test network
is 2km x 2km, and the maximum permissible transmission
range is 400. The maximum density of vehicles varies to 100,
200, 300, and 400. The number of RSUs deployed in the test
scenarios is set to 4 and 9. A smaller number of RSUs will
reduce the possible permutations to evaluate. As a result, the
number of evaluations by ns-2 is reduced, thereby arriving
at a desired solution in a reasonable time. They compared
the approach with other methods in literature to highlight the
benefits of GARSUD. There are no other details about the

Evaluate Placement

Prepare Position Files

Is Coverage 

satisfactory?
Yes

Prepare Link Files

Run Disolv

No

Initialization: Random 

Placement
Start

Stop
Calculate Coverage

Exploration: Generate 

new placement

Figure 2. GARSUD Workflow for RSU Placement using Disolv

execution time, and the performance impact of using ns-2 is
not discussed.

B. Hyperparameters

There are four main hyperparameters for genetic algorithms
to control the progress of the algorithm:

• Generations: The number of iterations that the algorithm
will take before termination. The higher the generations,
the better the chance for the algorithm to reach an optimal
solution.

• Solutions per Population: The number of placement
possibilities or the offspring generated per generation.
A higher number allows for a better sweep of the local
neighborhood.

• Parents Mating: The number of fit candidate solutions
in each generation considered for reproduction. A higher
number allows for more variety in the next generation.

• Parents to Keep: The number of parent solutions with
better fitness that can progress to the next generation. This
prevents accidentally losing the best solution if it is found
earlier in the process.

Generations and Solutions per Population have the highest
impact on performance. Larger values increase the simulation
duration and hence add to the computational load.

C. GARSUD with Disolv

In the GARSUD workflow, we replace the ns-2 with a
simplified VANET simulator in the evaluation step. The goal
of this paper is not to highlight the capabilities of GARSUD.
Those findings can be found in the article on GARSUD [4].
Instead, the goal is to highlight that a simplified simulator
enables fast fitness evaluation in optimization approaches
without losing solution quality. We only use GARSUD to
demonstrate our idea, and the intention is to improve the
evaluation stage.

As a simplified simulator, we select Disolv for the reasons
described in [5]. Since Disolv contains a simple network
representation, the latency model is not as accurate as that of
ns-2. Hence, the objective is modified to coverage, which can



0 20 40 60 80 100
Generations

0

10

20

30

40

U
nc

ov
er

ed
 V

eh
ic

le
s 

in
 P

er
ce

nt
ag

e

Disolv Fitness Calculation
ns-3 Fitness Validation

Figure 3. Fitness evaluation with Disolv validated by the ns-3. Fitness is
evaluated with ns-3 only for generations 0, 10, 20 and 100.

be obtained by running the Disolv simulation. Each vehicle’s
coverage is defined as the average percentage of the simulation
duration for which it was within the transmission range of an
RSU. The total coverage of the scenario is the average coverage
of all the vehicles within the scenario. Due to the way coverage
is defined, it can be calculated only at the end of a simulation.
Hence, each possible candidate deployment is evaluated with a
complete simulation run. The best solution in each generation
is picked based on the coverage. The solution obtained at
the last generation is expected to be optimal with the highest
possible coverage. Scenario-specific tuning of hyperparameters
is required to arrive at an optimal solution.

The workflow with Disolv contains additional steps required
to make Disolv run. Mobility and link input files must be
prepared to simulate in Disolv [5]. Because of the change in the
positions of RSU, the preparatory steps must be repeated before
each deployment evaluation. Hence, the GARSUD workflow
with the introduction of Disolv is defined as shown in Figure 2.
The preparatory steps required to run Disolv add additional
computation load. However, we can observe in the later sections
that this additional load has little impact.

V. EXPERIMENTS

A sub-region of Cologne with a size of 5.5km x 4.5km is
selected for the experiments. 1-hour traffic is added to the
network with the help of SUMO. The simulation is run in
SUMO to generate the Floating Car Data (FCD) data required
for Disolv simulation. In [4], a transmission range of 400m is
selected for the analysis. This value is relatively high for urban
settings, potentially resulting in more packet failures. Hence,
we reduce the transmission range to 200m. The number of
RSUs to be deployed is 200.

A. Placement

Initial experiments are conducted to validate if GARSUD
implementation functions as expected. The hyperparameters
are selected as 100 Generations, 20 Solutions per Population,
10 Parents Mating, 10 Parents to Keep. It is important to note

353000 354000 355000 356000 357000 358000 359000

5.643

5.644

5.645

5.646

5.647

1e6

Generation 10
Generation 100
both

y position (in m)

y 
po

si
ti

on
 (

in
 m

)

Figure 4. RSU placement solutions for generation 10 and generation 100

that scenario settings and hyperparameters are only selected for
demonstration purposes. The goal is not to suggest an optimal
RSU count for the scenario or the best possible combination
of hyperparameters. Instead, the intention is to quantify the
performance of the overall optimization workflow. Hence,
the scenario and settings are arbitrarily chosen to require a
noticeable computational effort.

Nevertheless, it is essential to validate the implementation.
Validation can be done by observing the change in uncovered
vehicles over the generations. The objective is set to calculate
the coverage output for each placement, and the best value for
every generation is stored. By subtracting it from 100%, we get
the non-coverage, which indicates the percentage of vehicles
not communicating with any RSU. This value should go
down over the generations if the solution quality is improving.
Indeed, the value goes down, as observed in the Figure 3. To
visually validate the placement output, the road network and
the positions of the RSUs are plotted in Figure 4. At generation
10, the placement solution is not ideal, and there are RSUs in
smaller roads with relatively infrequent traffic. By the 100th
generation, the algorithm knows to avoid roads with minimal
traffic, thereby increasing the vehicles in coverage. There is
potential to further optimize the placement with fewer RSUs;
however, that is not our goal.

B. Validation with ns-3

One of the main goals of the experiments is to demonstrate
that fast evaluation with simplified VANET simulators does
not result in loss of solution quality. This can be achieved
by running the entire GARSUD pipeline with a high-fidelity
VANET simulator to evaluate fitness. The evolution of the
fitness value with both simulators can then be compared to
validate the solution quality. However, a major drawback is
that the high-fidelity simulator has a high execution time. As
a result, it is practically infeasible to run GARSUD with a
high-fidelity simulator. Instead, we compare the best solutions
of certain generations using both simulators.



For a high-fidelity simulator, we chose ns-3 along with the
5G module developed by the authors of [14]. The simulation
scenario in ns-3 is designed to be similar to that of Disolv,
and the output from the simulator is converted to a coverage
value. Only the best solution of generations 1, 10, 20, and
100 are validated using ns-3. Non-coverage values from both
the simulators are plotted in Figure 3. It can be observed
that the fitness value progression of Disolv is following the
same trend as that of ns-3. Due to the detailed protocol stack
and the realistic models of ns-3, some packet drops were
introduced in the simulation. At the time instants of these
packet drops, vehicles are not considered to be in contact
with the RSU, which reduces the coverage. As a result, the
non-coverage value obtained from ns-3 is consistently above
that obtained from Disolv. Hence, we can conclude that a
fast VANET simulator like Disolv can effectively perform fast
fitness evaluation without loss in solution quality.

C. Execution Time

Another goal of the paper is to quantify the performance
benefits of using a simplified VANET simulator like Disolv
for fitness evaluation. The modified workflow with Disolv,
as shown in Figure 2, runs Disolv and its preparatory steps
for each placement solution. Multiple placement solutions are
evaluated in each generation through Disolv simulation. As a
result, despite setting the generations as 100, the number of
fitness evaluations is much higher. Further, forwarding the best
parents to the next generation results in repeated solutions in
each generation. This leads to redundant evaluation runs, which
can be avoided to reduce computational load. To prevent such
redundant evaluations, a coverage value cache is developed.
The total number of times the evaluation step is called comes
to 4828. With the help of the coverage cache, redundant runs
are filtered out, and the remaining unique evaluations are 1566.
The total time taken by the GARSUD algorithm to complete
100 generations is 15.1× 103 seconds. From the above data,
we can compute the average duration of the evaluation step to
be 9.65 seconds.

The execution times for both the simulators are shown in
Figure 5. The evaluation with ns-3 took 4.2 hours per candidate
solution. If the GARSUD workflow was designed with ns-
3, then the total execution time until the 100th generation
will be 72.99 × 106 seconds, roughly 844 days. By adding
a cache for repeated evaluations, the execution time can be
brought down to 25.93× 106 seconds, roughly 300 days. The
selected scenario consists of 200 vehicles, and the evaluation
step only simulates 1-hour duration. If the scenario is at the
city scale, then the number of vehicles and RSUs are high.
Further, a complete day of simulation is necessary to determine
the fitness value, accounting for the traffic pattern fluctuations.
This adds additional computational load to the simulator, and
the execution time blows up significantly. As a result, it can
be concluded that usage of ns-3 for GARSUD at a large scale
is practically infeasible.

1 1566
Number of iterations

10
seconds

10
minutes

10
hours

10
days

10
months

Si
m

ul
at

io
n 

du
ra

tio
n

ns-3
Disolv

Figure 5. Execution time for Disolv and estimated time for ns-3 (note the
logarithmic vertical axis)

VI. DISCUSSION

The primary goal of this paper is to demonstrate that a
simplified VANET simulator is an efficient fitness evaluation
tool for optimization approaches. We selected RSU placement
as an example to showcase the idea. Further, we selected
GARSUD, a genetic algorithm approach, for RSU placement.
Originally, the authors of GARSUD focused on reducing the
transmission delay. We modified the objective to improve the
coverage over the selected road network. GARSUD runs for a
predefined number of generations and candidate solutions per
generation. Each placement solution is evaluated by calculating
the coverage based on a simulation run using a simple VANET
simulator. We selected Disolv as a simplified VANET simulator.
Finally, we validate the best solution for each generation by
repeating the simulation using ns-3 with high-fidelity network
models of 5G. The coverage results from ns-3 indicate that
the values follow similar trends as that of Disolv. GARSUD
algorithm took 4.6 hours to complete 100 generations. If
the entire workflow of GARSUD was run with ns-3, then
the runtime is extrapolated to approximately 300 days. This
validates our proposal that a simplified VANET simulator is
sufficient for optimization approaches in terms of solution
quality while simultaneously providing fast fitness evaluation
capabilities for better exploration.

A. Strengths

Using a simplified VANET simulator for fitness evalua-
tion has multiple benefits. The obvious benefit is the high-
performance capabilities compared to high-fidelity VANET
simulators. With a quick turnaround, there is potential for a
wider exploration of solution space. Further, hyperparameter
tuning can be carried out without being affected by the
computational limitations. The scale of the scenario can be
expanded to city-scale, allowing for better validation of newly
proposed methods.

The objective function used by the original authors of
GARSUD is minimizing transmission latency. In this paper, we
selected the objective of maximizing the coverage of vehicles.
Any other network metrics can be used as an optimization



objective. For example, the objective can be designed to reduce
the average distance to the nearest RSU or server. The handover
operation from one terminal (base station, RSU, server) to
another can be expensive and affect service quality. The
objective can be designed to reduce the number of handovers.
Throughput can be another metric, and the objective can be
designed to maximize the throughput. A simplified VANET
simulator allows a user to carry out multiple optimization runs
with different objectives. The high-performance capabilities of
the simplified VANET simulator keep the runtime reasonable.
Further, the best solutions can be compared to determine
the suitability of an objective for a given scenario and the
application.

B. Limitations

One of the limitations of using a simplified VANET simulator,
besides focusing on large-scale effects (as opposed to, e.g.,
antenna patterns [15] or shadowing effects at intersections [16]),
is the inability to detect anomalies in the VANET under over-
load conditions. The optimal solution in the case of GARSUD
results in a placement capable of providing maximum coverage.
The placement solution’s performance is guaranteed to be
good when the system is in a steady state. However, the
characteristics of network behavior under overload, such as high
latency, interference, packet failures, etc., are not detectable
with simplified VANET simulators. A strategy to overcome this
is to carry out additional evaluations on the final solution using
a high-fidelity VANET simulator. Recently, multi-objective
problems are increasingly proposed for ITS applications [17],
[18]. If one of the objectives is latency, then simplified VANET
simulators cannot be used for fitness evaluation.

C. Applications

In addition to the genetic algorithm approach used in
this paper, several other metaheuristics are available to solve
optimization problems. Simulated annealing and Tabu Search
are popular meta-heuristics. They can also be analyzed to check
their suitability for solving RSU placement. The RSU place-
ment problem is only used as an example. A similar approach
can be incorporated for any other ITS application that requires
optimization. For example, server placement problem [3], [19]
can benefit from using a simplified VANET simulator. Network
slicing is another area filled with optimization approaches [20].
Any optimization approach for these ITS applications can be
sped by using a simplified VANET simulator in the evaluation
phase.

Deep Reinforcement learning is emerging as an alternative
technique for solving optimization problems, especially the
ones with multiple objectives [21]. Sometimes, a few 100s or
even 1000s of episodes are required to achieve an optimal solu-
tion. If a single episode involves an entire VANET simulation
run, then a simplified VANET simulator can be considered to
model the environment. Similar to the optimization approaches,
the final solution can be further evaluated using a high-fidelity
VANET simulator.

REFERENCES

[1] R. I. Tinini, M. R. P. dos Santos, G. B. Figueiredo, and D. M. Batista,
“5GPy: A SimPy-based Simulator for Performance Evaluations in 5G
Hybrid Cloud-Fog RAN Architectures,” Elsevier Simulation Modelling
Practice and Theory, vol. 101, May 2020.

[2] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5G –
An OMNeT++ Library for End-to-End Performance Evaluation of 5G
Networks,” IEEE Access, vol. 8, Jan. 2020.

[3] T. Lähderanta, T. Leppänen, L. Ruha, L. Lovén, E. Harjula, M. Ylianttila,
J. Riekki, and M. J. Sillanpää, “Edge Computing Server Placement
with Capacitated Location Allocation,” Elsevier Journal of Parallel and
Distributed Computing, vol. 153, Jul. 2021.

[4] M. Fogue, J. Sanguesa, F. Martinez, and J. Marquez-Barja, “Improving
Roadside Unit Deployment in Vehicular Networks by Exploiting Genetic
Algorithms,” MDPI Applied Sciences, vol. 8, no. 1, Jan. 2018.

[5] N. T. Tangirala, C. Sommer, and A. Knoll, “Simulating Data Flows of
Very Large Scale Intelligent Transportation Systems,” in Proceedings of
the 38th ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (SIGSIM-PADS 2024). ACM, Jun. 2024.

[6] F. Ahmed, B. Alsamani, M. Alkhathami, D. Alsadie, N. Alosaimi,
B. Alenzi, and L. Nkenyereye, “Efficient content caching for 5G assisted
vehicular networks,” Springer Nature Scientific Reports, vol. 14, no. 1,
Feb. 2024.

[7] D. Andreev, R. Trifonov, and M. Lazarova, “Challenges Regarding AI
Integration in V2X Communication,” in 2024 12th International Scientific
Conference on Computer Science (COMSCI). IEEE, Sep. 2024.

[8] Z. Ahmed, S. Naz, and J. Ahmed, “Minimizing Transmission Delays
in Vehicular Ad Hoc Networks by Optimized Placement of Road-Side
Unit,” Springer Wireless Networks, vol. 26, no. 4, Jan. 2020.

[9] H. Yu, R. Liu, Z. Li, Y. Ren, and H. Jiang, “An RSU Deployment Strategy
Based on Traffic Demand in Vehicular Ad Hoc Networks (VANETs),”
IEEE Internet of Things Journal, vol. 9, no. 9, May 2022.

[10] A. Guerna, S. Bitam, and C. T. Calafate, “AC-RDV: A Novel Ant Colony
System for Roadside Units Deployment in Vehicular Ad Hoc Networks,”
Springer Peer-to-Peer Networking and Applications, vol. 14, no. 2, Oct.
2020.

[11] F. Irani, “VSIM: A New Simulation and Performance Evaluation Tool
for MANET and VANET,” Springer International Journal of Information
Technology, Sep. 2024.

[12] M. Mathiane, C. Tu, P. A. Owola, and M. C. Nawej, “A SUMO
Simulation Study on VANET-Based Adaptive Traffic Light Control
System,” in Advances in Electrical and Computer Technologies. Springer,
2022.

[13] C. R. Reeves and J. E. Rowe, Genetic Algorithms—Principles and
Perspectives: A Guide to GA Theory. Springer, 2002.

[14] N. Patriciello, S. Lagen, B. Bojovic, and L. Giupponi, “An E2E simulator
for 5G NR networks,” Elsevier Simulation Modelling Practice and Theory,
vol. 96, Nov. 2019.

[15] D. Eckhoff, A. Brummer, and C. Sommer, “On the Impact of Antenna
Patterns on VANET Simulation,” in 8th IEEE Vehicular Networking
Conference (VNC 2016). Columbus, OH: IEEE, Dec. 2016.

[16] S. Joerer, B. Bloessl, M. Segata, C. Sommer, R. Lo Cigno, A. Jamalipour,
and F. Dressler, “Enabling Situation Awareness at Intersections for
IVC Congestion Control Mechanisms,” IEEE Transactions on Mobile
Computing, vol. 15, no. 7, Jul. 2016.

[17] M. Kishani, Z. Becvar, M. Nikooroo, and H. Asadi, “Joint Optimization
of Communication and Storage Latencies for Vehicular Edge Computing,”
IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 6,
Jun. 2024.

[18] S. Jain, V. K. Jain, and S. Mishra, “An efficient multi-objective UAV
assisted RSU deployment (MOURD) scheme for VANET,” Elsevier Ad
Hoc Networks, vol. 163, Oct. 2024.

[19] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-
Enabled V2X Service Placement for Intelligent Transportation Systems,”
IEEE Transactions on Mobile Computing, vol. 20, no. 4, Apr. 2021.

[20] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, “VNF and CNF Place-
ment in 5G: Recent Advances and Future Trends,” IEEE Transactions
on Network and Service Management, vol. 20, no. 4, Dec. 2023.

[21] J. Lu, J. Jiang, V. Balasubramanian, M. R. Khosravi, and X. Xu, “Deep
Reinforcement Learning-Based Multi-Objective Edge Server Placement
in Internet of Vehicles,” Elsevier Computer Communications, vol. 187,
Apr. 2022.


